
OIO IDWS REST profile (V1.0)

 February 11th 2016

Background and purpose

The purpose of this document is to define a web service profile based on REST,
where the client is authorized using a SAML Identity Token. The profile is
designed to cover similar use cases as the Liberty Basic SOAP Binding [LIB-
SOAP] with an equivalent level of security.

The main elements of the profile are:

• Securing a REST invocation from a web service client (WSC) to web
service provider (WSP).

• Utilizing TLS for transport layer security (ensuring integrity,
confidentiality)

• Authentication and authorization via a SAML token issued by a Security
Token Service trusted by the web service provider.

• Optionally using a client certificate for proving Holder-of-key
relationships.

The profile is inspired by OAuth 2.0 [RFC6749] which is used in many REST-
based use cases.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTIONAL" in this specification are to be interpreted as described in
RFC2119.

Assumptions and Design Goals

• The web service client is a rich client or web application.
• The web service client has already obtained a SAML security token from a

Security Token Service which the web service provider trusts:
o The SAML tokens complies to the OIO SAML Identity Token

Profile.
o The SAML token may be encrypted (<EncryptedAssertion>) or in

clear text. In case it is encrypted, it is assumed that the STS knows
the WSP’s public key (for encryption) via an out-of-band
mechanism.

o The SAML token may be a “Bearer” token or “Holder-of-key
token” (as defined by the SAML <SubjectConfirmation>
element).

o The SAML token is signed by the STS, and WSP has the STS
certificate installed for verification of the signature.

• SAML tokens may exceed the size limits (~ 8KB) usually found in web
server implementation for HTTP headers and query parameters1.
Therefore, it is not a robust option to pass the SAML token via these
mechanisms.

• The overhead of processing a SAML assertion on every web service
invocation should be avoided.

Main Steps

To complete a scenario, three steps are executed:
1. The web service client requests a SAML token from the STS. This step is

outside the scope of this profile and just mentioned for completeness of
the scenario2.

2. The web service client exchanges the SAML token for a short, opaque
token called an access token using an authorization service (AS) co-located
with the WSP. The access token is simply a string representing an access
authorization issued to the client.

3. The web service client invokes the WSP (protected resource) using the
access token. The WSP is able to verify the access token issued by the
authorization service and determine if the invocation is authorized.

The Authorization Service and the Web Service Provider are closely related and
trust each other. For example, they can be part of the same application or they can
be more loosely coupled. The main point is that the Authorization Service can
issue access tokens understood by the Web Service Provider and which can be
used for access control enforcement. The format and internal structure of the
access token is private to the implementation – e.g. it could be a reference to
shared data structure where the authorizations of the SAML token are stored.

1	For example, encrypted Assertions issued by the NemLog-in STS are usually larger than 11KB.	
2	In a Danish Context this could be performed by calling the NemLog-in Security Token Service
using the WS-Trust protocol (over SOAP). The OIO WS-Trust profile (which NemLog-in
follows) can be found here: https://digitaliser.dk/resource/516724	

The steps are illustrated below:

Note: after completing all steps, the access token may be re-used by the client for
subsequent invocations until it expires – i.e. step 1 and 2 are not repeated.

Details of step 2: Requesting an access token

The client begins by base64 encoding the SAML token (either <Assertion> or
<EncryptedAssertion> element) and POSTING the result to the authorization
service endpoint3:

The client MUST use TLS 1.1 or higher. If the SAML token is a Holder-of-key
token, the client MUST use TLS with client authentication.

Authorization Service Processing rules
The Authorization Service validates the SAML token using normal SAML
processing rules including (but not limited to):

3	Note that RFC7522 describes a ”SAML 2.0 profile for OAuth 2.0 Client
Authentication and Authorization Grants” which is similar but does not handle
Holder-of-key Assertions (only Bearer). Therefore, it has been disregarded in this
profile.	

POST	/token	HTTP/1.1	
Host:	authorizationserver.example.com	
Content-Type:	application/x-www-form-urlencoded;charset=UTF-8	
	
saml-token=MIIGNDCCBRygAwIBAgIETBJt6DANBgkqhkiG9w0BAQsFAD...	

• Decrypting the Assertion (if encrypted)
• Validating that the Assertion was signed by a trusted STS
• Validating signature value and digests
• Validating that the Assertion is valid (XML wellformed and not expired)
• Validating that the AudienceRestriction element identifies the WSP.

Note: If the Assertion has “Holder-of-key” confirmation type, the Authorization
Server MUST verify that the client has used TLS with client authentication AND
the client's TLS certificate is equal to the certificate included in the Assertion
<SubjectConfirmation> element as “Holder-of-key”. This ensures that only a
client with the corresponding private key can present the Assertion (i.e. it is
bound to the client).

If any of the token validations fail, the Authorization Server MUST reject the
request with an appropriate HTTP error code (401) and a token MUST NOT be
returned. Instead, an error code and error message SHOULD be returned as
described below:

If the validation passes, an HTTP response with a JSON structure like the
following shall be returned:

HTTP/1.1	200	OK	
Content-Type:	application/json;	
charset=UTF-8	Cache-Control:	no-store	
Pragma:	no-cache	
	
{	
"access_token":"7Fjfp0ZBr1H8shJgaJs97Jb”,	
"token_type":"Bearer",		
"expires_in":3600		
}	

HTTP/1.1	401	Unauthorized	
WWW-Authenticate:	Bearer	error="invalid_token",	
																																							error_description="The	SAML	token	is	expired"	

Parameters:

access_token 	

REQUIRED. The access token issued by the authorization server. This is
simply an opaque string and it MUST contain at least 64 bits of entropy to
prevent guessing.

token_type 	

REQUIRED. The type of the token issued MUST be “Bearer” or
"Holder-of-key".4 This SHOULD correspond to the type of the original
SAML token.

expires_in 	

REQUIRED. The lifetime in seconds of the access token. For example,
the value 3600 denotes that the access token will expire in one hour from
the time the response was generated.

Note: for security reasons, the Authorization server SHOULD limit the validity
period (e.g. less than one hour) when issuing Bearer tokens. If the access token
expires but the corresponding SAML token is not expired, the SAML token can
be used to request a new access token without contacting the STS (i.e. just
performing step 2 and 3 in the flow).

4	OAuth does not seem to have a token type that mimics SAML’s concept of “Holder-of-key”
exactly. Mac-tokens [OAuth-mac] have been considered for this profile but not found to fulfil the
need since a symmetric key must be exchanged out-of-band and OIO IDWS uses asymmetric keys
for Holder-of-key.	

Details of step 3: Using an access token

The access token is used in a normal HTTP REST operation by passing the token
as shown below.

In case the client has received multiple SAML tokens for the same WSP to be
used in different contexts, the client MUST select the appropriate access token for
the current invocation context.

Presenting “Bearer” access tokens
The client MUST use TLS 1.1 or higher.

The client MUST use the “Bearer” token type defined in [RFC6750] and follow
requirements in this specification.

The client MUST pass the token in an Authorization header (the other options in
RFC6750 are not allowed):

Presenting “Holder-of-key” access tokens
The client MUST use TLS 1.1 or higher with client authentication.

The client MUST use the “Holder-of-key” token type defined below but
otherwise follow [RFC6750].

The client MUST pass the token in an Authorization header (the other options in
RFC6750 are not allowed):

WSP processing rules
The WSP MUST validate the access token on every request:

• The token is known.
• Not expired.

GET	/resource/1	HTTP/1.1	
Host:	example.com	
Authorization:	Bearer	7Fjfp0ZBr1H8shJgaJs97Jb	

GET	/resource/1	HTTP/1.1	
Host:	example.com	
Authorization:	Holder-of-key	7Fjfp0ZBr1H8shJgaJs97Jb	

• Of correct type (Bearer vs. Holder-of-key)
• For Holder-of-key tokens the WSP MUST check that the WSC TLS

client certificate is the same as referenced in the original SAML token's
<SubjectConfirmation> "Holder-of-key" element. This in effect makes
the access token a Holder-of-key token.

All rejected access requests SHOULD be logged by the WSP.

The WSP SHOULD consider the risk of replay attacks and implement
appropriate countermeasures if necessary.

Error handling
If the WSP does not recognize the access token, if is expired, if the token does
not authorize the current operation or if any other authorization fails, an
appropriate HTTP error code (e.g. 400, 401, 403, or 405) SHOULD be returned
along with error codes detailing the reason.

The server SHOULD respond to errors as described in RFC6750 e.g.:

The defined error codes are “invalid_request”, “invalid_token” and
“insufficient_scope”.

HTTP/1.1	401	Unauthorized	
WWW-Authenticate:		Bearer	realm="example",	
																								 													error="invalid_token",	
																																								error_description="The	access	token	is	expired"	

References

RFC6750 “The OAuth 2.0 Authorization Framework: Bearer Token Usage”,

IETF. http://tools.ietf.org/html/rfc6750

OAuth-mac “OAuth 2.0 Message Authentication Code (MAC) Tokens”, IETF.
http://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac-05

RFC6749 “The OAuth 2.0 Authorization Framework”, IETF.
https://tools.ietf.org/html/rfc6749

LIB-SOAP “Liberty Basic SOAP Binding 1.0”.
https://digitaliser.dk/resource/414852

