

OIO WS-Trust Profile

Version 1.1

Agency for Digitisation
February 2017

>

2

Content >

Document History 3	

Introduction 4	
Related profiles 4	
Notational Conventions 4	

General Requirements 6	
<wst:RequestSecurityToken> Usage 6	
Processing Rules 6	
<wst:RequestSecurityTokenResponse> Usage 6	
Processing Rules 6	

Issuance Binding 7	
<RequestSecurityToken> Requirements 7	
Processing Rules 7	
Delegation 8	
Request example (non-normative) 9	
<RequestSecurityTokenResponse> requirements 10	
Response example (non-normative) 11	

Security Requirements 13	

Architectural Decisions (informational) 14	
Claims in request 14	
Token Format 14	
Require Active Browser Sessions 15	
Binding 15	
Token life time 16	
Placement of user token 16	

References 17	

3

Date Version Initials Changes

09-06-2009 0.99 SPN Document ready for OIO public hearing

08-09-2009 1.0 TG Document updated after public hearing (only editorial changes).

14-12-2009 1.0.1 TG Updated to clarify that the <ActAs> element is defined under
WS-Trust 1.4 namespace.

14-06-2010 1.0.2 TG Added profiling of the <UseKey> element.

22-01-2017 1.1 TG Clarified that the profile is compatible with WS-Trust 1.4 in
addition to WS-Trust 1.3.

Improved clarity of requirements by usage of RFC 2119.

References updated to new profiles and standards.

Requirements for wst:RequestedAttachedReference and
wst:RequestedUnattachedReference elements have been
telaxed from a ‘MUST’ to a ‘SHOULD’.

Requirements for ic:ClaimType elements and Dialect attribute on
wst:Claims have been changed from a 'SHOULD' to a 'MAY'.

Figure added to illustrate relationships between profiles.

Document History

4

Identity-based web services are expected to play an important role within Danish eGovernment since they
allow IT systems to be connected in a secure, privacy-respecting and interoperable manner.

The needs and requirements of the Danish public sector have been documented in a number of scenarios
[Scenarios]. One important component that has been identified is a Security Token Service (STS) that can
issue and exchange security tokens in the form of SAML 2.0 Assertions. This document specifies a WS-
Trust interoperability profile defining the messaging interface of such a security token service. The profile
limits the large number choices and flexibility present in WS-Trust and tailors it to the specific context. The
goal is to promote interoperability and reduce complexity for implementers.

This profile is meant to be used in two major scenarios: the first is a web site (e.g. a portal) who needs to
invoke an identity-based web service at a web service provider (WSP) on behalf of a (browser) user. In order
to invoke the web service, the requester must first obtain an identity token representing the user from an
STS, and subsequently place it in the web service call. Another important use of the profile is scenarios with
“rich clients” that needs to invoke external web services on the user’s behalf and therefore also need to
obtain security tokens to gain access.

Notational Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be
interpreted as described in RFC2119.

The following abbreviations are used:

• Identity Provider (IdP) - a federated authentication service (typically based on SAML 2.0).
• Service Provider (SP) - a web application or portal allowing federated log-in using an Identity

Provider.
• Security Token Service (STS) - a service issuing security tokens for web service invocations

(typically based on WS-Trust).
• Web Service Consumer (WSC) - an application or client that needs to invoke a foreign identity-

based web service in context of a particular user.
• Web Service Provider (WSP) - a provider of an identity-based web service that allows access based

on a security token issued by a trusted STS.

Related profiles
This profile is designed such that all messages conforming to it will be a (true) subset of WS-Trust [WST]
conforming messages. The XML name space prefixes used in this profile (e.g. wsu, ds, wst, wsa, wsp) have
the same value and meaning as in WS-Trust (not repeated here). The profile is compatible with both WS-
Trust version 1.3 and 1.4 - the only exception is the use of the <wst14:ActAs> element which does not
exist in WS-Trust 1.3.

A number of other documents are closely related:

• The [Scenarios] document describes the overall business goals and requirements within Danish
eGovernment and shows how the different OIO profiles are combined to achieve these.

• The OIO SAML Profile for Identity Tokens [OIO-IDT] defines requirements for security tokens
issued by Security Token Services.

• The OIO WS-Trust Deployment Profile [OIO-WST-DEP] defines bindings for deployment of this
profile.

Introduction

5

The figure below illustrates the "big picture" of OIO IDWS profiles in a typical scenario:

The reader is assumed to be familiar with WS-Trust [WST] and SAML.

6

This chapter contains requirements for all WS-Trust operations defined in this profile.

The OIO WS-Trust profile does not mandate any specific transport binding or security mechanisms for
transmitting the WS-Trust messages. Separate deployment profiles (e.g. [OIO-WST-DEP]) will have to
define mappings to e.g. SOAP and further specify security details relevant for the transport binding.
However, this profile states high-level requirements for signing message elements below.

<wst:RequestSecurityToken> Usage
• The <wst:RequestSecurityToken> element MUST be signed by the requester.
• The requester MAY send security tokens (including certificates) vouching for its identity and signing

key as appropriate to the selected binding.
• The requester MAY send security tokens vouching for the identity of a user that is acted on behalf

of.

Processing Rules
The STS receiving a WS-Trust message MUST do the following:

• Validate the signature, any certificates, any security tokens and timestamp of the request according
to local policy.

<wst:RequestSecurityTokenResponse> Usage
• The response MUST consist of exactly one <RequestSecurityTokenResponseCollection>

element with exactly one <RequestSecurityTokenResponse> element.
• The response MUST be signed by the STS.

Processing Rules
The receiver MUST do the following:

• Validate the signature and timestamp of the response according to local policy.

General Requirements

7

This chapter specifies message requirements in context of the Issuance binding defined in WS-Trust [WST].
Note that the general requirements in the previous chapter MUST also be followed.

Unless described otherwise all message elements and processing rules defined in WS-Trust apply.

<RequestSecurityToken> Requirements
• The <wst:RequestType> element MUST indicate the issuance binding and therefore use the

following URI: http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue.
• When a service is requesting a token on behalf of a user, an <wst14:ActAs> element defined in

WS-Trust 1.41 MUST be present and include a bootstrap token representing the user. The token
SHOULD be embedded directly and thus not be a token reference. The format of the bootstrap token
is not specified in this profile as it can vary with different deployments. The OIO bootstrap token
profile [OIO-BTP] contains a profile for the web SSO scenario where the user has a browser session
with a SAML-based Identity Provider.

• The <wsp:AppliesTo> element SHOULD contain an <wsa:EndpointReference> identifying
the recipient (e.g. web service provider) for which the identity token should be issued.

• The <wst:Claims> element SHOULD include a list of the claims requested to be included in the
issued token. The individual claims MAY be specified using the ic:ClaimType element defined in
[ISIP]. Furthermore, the Dialect attribute on wst:Claims MAY be set to
http://schemas.xmlsoap.org/ws/2005/05/identity

• The <wst:LifeTime> MAY be used to indicate the desired valid time range of the token to be
issued. The issuer is not obligated to honor this range and MAY return a token with a shorter life
time.

• If the requester wants the STS to issue a SAML 2.0 holder-of-key token referencing the requester’s
X.509 certificate2, it MUST include a <wst:UseKey> with the certificate embedded in a
<wsse:BinarySecurityToken> element. Here the ValueType attribute MUST be set to
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-

profile-1.0#X509v3 and the EncodingType attribute set to http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary

Processing Rules
• The token lifetime SHOULD be set according to local policy and MAY override the lifetime

indicated in the request.
• The lifetime set in the response SHOULD match the lifetime in the issued token.
• If the issued token is a SAML 2.0 assertion with a “holder-of-key” subject confirmation element:

o Any (asymmetric) public key referenced in this element SHOULD match the key used to
verify the requester’s signature on the request message.

o Any symmetric keys returned MUST be encrypted under the recipient’s key (the audience of
the token). Further, the generated symmetric key MUST also be returned in a
<wst:RequestedProofToken> for the requester.

1 The reader should notice that the original WS-Trust 1.4 specification by mistake defined the ActAs element in WS-
Trust 1.3 namespace (http://docs.oasis-open.org/ws-sx/ws-trust/200512 denoted “wst” here),
where it should have been declared in WS-Trust 1.4 namespace (http://docs.oasis-open.org/ws-sx/ws-
trust/200802 denoted “wst14” here). This has been corrected with the official Eratta 01 [WST-1.4].
2 I.e. the existing private key becomes proof-of-possession key for the new token.

Issuance Binding

8

• The token issuer MAY perform an authorization decision before issuing the identity token. Such
decisions are out of scope for this profile.

• If the issued token includes an audience restriction (e.g. as in SAML 2), this element MUST be
consistent with the <wsp:AppliesTo> element in the response. Note that the SAML entity ID in
the issued token may be syntactically different from a provider specified in the end point reference in
the <wsp:AppliesTo> element, but they MUST refer to the same logical entity.

• The token issuer MAY define local policies stating additional conditions for a token to be issued -
including requiring the user to have an active SSO session with an Identity Provider. How the token
issuer performs such checks is considered private and therefore outside the scope of this profile3.

Delegation
Delegation of tokens SHOULD NOT be used in the OIO profile.

3 For example, a bootstrap assertion could include a reference to the current Identity Provider session for the user (e.g.
SessionIndex).

9

Request example (non-normative)
Below is shown a SOAP message with a sample request (some fields have been omitted to keep the example
short). Note that the usage of SOAP, WS-Addressing and WS-Security is not normative and will depend on
the specific binding and security mechanisms relevant for the deployment:

<S11:Envelope xmlns:S11="..." xmlns:wsu="..." xmlns:wsse="..." xmlns:xenc="..." xmlns:wst="...">

 <S11:Header>
 <wsa:Action>http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue</wsa:Action>
 <wsa:MessageID>urn:uuid:99999999-0000-0000….</wsa:MessageID>
 <wsa:To>http://sts.example.org</wsa:To>

 <wsse:Security mustUnderstand=”1”>
 <wsu:Timestamp wsu:ID=”ts”> … </wsu:Timestamp>
 <ds:Signature xmlns:ds="...">
 <ds:SignedInfo> …
 <ds:Reference URI="#req"> … </ds:Reference>
 <ds:Reference URI=”#ts”> ... </ds:Reference>
 <!-- More references to other header elements -->
 </ds:SignedInfo>
 <ds:SignatureValue> … </ds:SignatureValue>
 <ds:KeyInfo>
 <ds:X509Data> … sender certificate … </ds:X509Data>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </S11:Header>

 <S11:Body wsu:Id="req">
 <wst:RequestSecurityToken Context=”urn:uuid:00000…”>
 <wst:TokenType>
 http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0
 </wst:TokenType>

 <wst:RequestType>
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue
 </wst:RequestType>

 <wst:UseKey>
 <wsse:BinarySecurityToken
 ValueType="http://docs.oasis-open.org/....X509v3"
 EncodingType="http://docs.oasis-open.org/...Base64Binary”>
 BASE64 encoded value
 </wsse:BinarySecurityToken>
 </wst:UseKey>

 <wst14:ActAs>
 <!-— Include token for user that is acted on behalf of here -->
 </wst14:ActAs>

 <wsp:AppliesTo>
 <wsa:EndpointReference>
 <wsa:Address>http://agency_x.dk</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>

 <wst:Claims wst:Dialect=”http://schemas.xmlsoap.org/ws/2005/05/identity”>
 <ic:ClaimType Uri="http://.../ws/2005/05/identity/claims/givenname"/>
 <ic:ClaimType Uri="http://.../ws/2005/05/identity/claims/surname"/>
 </wst:Claims>

 </wst:RequestSecurityToken>
 </S11:Body>
</S11:Envelope>

10

In the above example, the sender signs the request and includes his X.509 certificate to authenticate the
request, ensure integrity and establish trust in the signing key. Further, a token representing the user that is
acted on behalf of is also included.

<RequestSecurityTokenResponse> requirements
• The <wst:RequestedSecurityToken> MUST contain the issued token directly (i.e. not a

SecurityTokenReference).
• If a symmetric key is returned, a <wst:RequestedProofToken> element MUST be returned

specifying the generated key or entropy that can be used to compute the key.
• The <wsp:AppliesTo> element SHOULD contain the <wsa:EndpointReference> from the

request. If the token issuer performs authorization decisions, the scope of the resource MAY be
overridden.

• The wst:RequestedAttachedReference and wst:RequestedUnattachedReference
elements SHOULD be included in the response. These allow the requesting Web Service Consumer
to use the issued token in messages towards a Web Service Provider (including signing the token via
the message signature) without knowing the token type or parsing it.

11

Response example (non-normative)
Below is shown a SOAP message with a sample response. As before the usage of SOAP, WS-Addressing
and WS-Security is not normative and will vary with binding:

<S11:Envelope xmlns:S11="..." xmlns:wsu="..." xmlns:wsse="..."
xmlns:xenc="..." xmlns:wst="...">

 <S11:Header>

 <wsa:Action>http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue</wsa:Action>
 <wsa:MessageID>urn:uuid:99999777-0000….</wsa:MessageID>
 <wsse:Security mustUnderstand=”1”>
 <wsu:Timestamp wsu:ID=”ts”> … </wsu:Timestamp>
 <ds:Signature xmlns:ds="...">
 <ds:SignedInfo> …
 <ds:Reference URI="#resp"> … </ds:Reference>
 <ds:Reference URI=”#ts”> ... </ds:Reference>
 <!-- More references to other header elements -->
 </ds:SignedInfo>
 <ds:SignatureValue> … </ds:SignatureValue>
 <ds:KeyInfo>
 <ds:X509Data> .. STS certificate … </ds:X509Data>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </S11:Header>
 <S11:Body wsu:Id="resp">
 <wst:RequestSecurityTokenResponseCollection>
 <wst:RequestSecurityTokenResponse Context=”urn:uuid:00000…”>
 <wst:TokenType>
 http://docs.oasis-open.org/wss/oasis-wss-saml-token-
 profile-1.1#SAMLV2.0
 </wst:TokenType>
 <wst:RequestedSecurityToken>
 <!—- Here comes the issued token -->
 <saml:Assertion ID="_1234 " Version="2.0" …> …
 </saml:Assertion>
 </wst:RequestedSecurityToken>
 <wst:RequestedAttachedReference>
 <wsse:SecurityTokenReference …>
 <wsse:KeyIdentifier ValueType="http://docs.oasis-
 open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLID>_1234
 </wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </wst:RequestedAttachedReference>
 <wst:RequestedUnattachedReference>
 <!—- As the attached reference above -->
 </wst:RequestedUnattachedReference>
 <wsp:AppliesTo>
 <wsa:EndpointReference>
 <wsa:Address>http://agency_x.dk</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wst:Lifetime> … </Lifetime>
 </wst:RequestSecurityTokenResponse>
 </wst:RequestSecurityTokenResponseCollection>
 </S11:Body>
</S11:Envelope>

12

The STS has signed the response message and issued a SAML 2.0 assertion with the requested claims about
the user. The issued assertion could include a SubjectConfirmation element with a holder-of-key reference to
the requester’s key.

13

This profile simply requires request and response message to be signed to ensure authentication and
integrity. Security details including how to map to specific security mechanisms present in bindings are left
to deployment profiles such as [OIO-WST-DEP].

Security Requirements

14

This chapter contains describe architectural decisions which provide the rationale behind important choices
made in the profile.

Claims in request

Problem Should the Web Service Consumer know / discover which claims the Web
Service Provider needs in the token to grant access to the requested service
(as in <AppliesTo>) and put them in the RST/Claims element for the STS?!

Assumptions The WSP performs authorization decisions before service access is granted
based on the identity of the WSC and the claims in the token. It has
formulated an explicit policy specifying the required claims in tokens.

Alternatives 1) The WSC could have the responsibility of determining the claims and
specifying them in the RST.

2) The STS could have the responsibility of knowing the WSP’s access
policy and thus including the right claims in the issued tokens.

3) A combination of the above.
4) Require WSC and WSP to use WS-SecurityPolicy and

MetaDataExchange for maximum flexibility.

Analysis The most general and flexible approach is to specify the claims in the RST
message.

This does not automatically imply that the WSC has to understand WS-
SecurityPolicy and/or dynamically fetch the WSP’s policy. When trust
relations and claims are fairly static, a WSC may still be statically configured
with the required claims and can later evolve to a more dynamic, policy-
driven approach.

Specifying the claims seems to be more interoperable (see e,g, [ISIP])..

Decision Recommend the WSC to specify the claims.

Token Format

Problem Should the profile specify the format of tokens being issued?!

Assumptions In Danish eGovernment scenarios only SAML 2.0 assertions are relevant.

Alternatives 1) Restrict profile to a SAML 2.0 token profile.
2) Let token profiles be unspecified in this profile.

Analysis WS-Trust allows the issued tokens to be opaque to the Web Service
Consumer. Thus, there is no real reason to restrict the token format. Leaving
the token format open will allow use of the profile in other contexts than
Danish eGovernment.

Instead, it can be left to deployment guides / policies to state, that parties
only are required to support SAML 2.0 tokens to allow simple
implementations.

Decision Don’t specify token formats in this profile.

Architectural Decisions (informational)

15

Require Active Browser Sessions

Problem Should the profile require the STS to only issue tokens if the user has an
active browser session with an Identity Provider?!

Assumptions Tokens are used for invoking services on the user’s behalf. In some
situations, the WSP may want assurance that the user is currently active (has
a session with the IdP) – especially when trust in the WSC is low. Enforcing
such a policy would provide the WSP the desired assurance.

Alternatives 1) Require the STS to only issue tokens if the user has a valid session with
an Identity Provider.

2) Require the STS only to issue tokens if the user’s session was
established recently (e.g. based on authentication instant or
SessionNotOnOrAfter in the SSO assertion).

3) Leave such policies outside the profile.

Analysis The real business needs will probably vary among deployments and it can
potentially be complicated for an STS to check whether the user’s SSO
session with the IdP is valid.

Another way for the WSP to be assured that the WSC is not abusing a token
is to request user interaction (e.g. using the Liberty RedirectRequest
protocol) such that the user himself can confirm or provide consent.

Further, the IdP session requirement does not make sense in “rich client”
scenarios that should also be supported by the profile.

Decision Leave it as a policy outside the profile.

Binding

Problem Which bindings should be used for conveying WS-Trust messages?!

Assumptions We need a widely available binding offering adequate security including
support for security tokens.

Alternatives 1) Liberty ID-WSF 2.0 SOAP Binding
2) Liberty Basic SOAP Binding for eGovernment
3) OIO Basic Security Profile
4) OWSA Model T
5) Specify own binding based on WS-Security.
6) Don’t specify binding – leave it to deployment profiles.

Analysis The SWITCH profile uses Liberty SOAP Binding which is the far most
commonly deployed among the alternatives.

However, some COTS STS products will not support this binding.

Thus, it may be the case that STS’es are deployed with different requirements
for bindings.

Decision Don’t specify binding – leave it to deployment profiles such as [OIO-WST-
DEP].

16

Token life time

Problem Should the profile specify token life time and whether the token can be used
for multiple service invocations?!

Assumptions

Alternatives 1) Require the STS to set token life time to a pre-defined value.
2) Restrict tokens for one service invocation.
3) Leave token life time policies outside the profile.

Analysis From a security perspective, tokens should be fresh and limited in scope to
prevent misuse. On the other hand the overhead of obtaining and validating
tokens can be considerable – especially in scenarios with multiple web
service invocations from one WSC to one WSP on behalf of the same user.

Security versus performance trade-offs will probably vary with deployments.

Decision Leave token life time policies outside the profile. It should be determined in
local deployments.

Placement of user token

Problem Where should the user token be placed when a Web Service Consumer
requests a token on behalf of a user.

Assumptions The STS needs both the identity of the user and Web Service Consumer.

Alternatives 1. Place it in the <wst:OnBehalfOf> element.
2. Use the <wst14:ActAs> defined in WS-Trust 1.4.
3. Define a custom element (non-WST namespace) for the token.

Analysis After discussions with experts on the <wst:OnBehalfOf> it has become clear
that this element does not support the semantics required by this profile: that
someone is acting on behalf of a user.

Instead <wst:OnBehalfOf> is used when the requestor is a proxy that obtains
the token on the Web Service Consumer’s behalf and forwards the token
back to the WSC for his own use - which is not the case in our eGovernment
scenarios.

WS-Trust 1.4 has introduced on <wst14:ActAs> element with the semantics
we seek – i.e. the WSC requesting a token on the user’s behalf.

Instead of defining our own custom element for this, we have chosen to adopt
the <wst14:ActAs> from the WS-Trust 1.4, which is completely backwards-
compatible to WS-Trust 1.3.

Decision Use the <wst14:ActAs> element from WS-Trust 1.4.

17

[WST 1.3]

[WST 1.4]

[OIO-WST-DEP]

[SAML-CORE]

[OIO-BTP]

[OIO-SAML-SSO]

[OIO-SOAP]

“WS-Trust 1.3”, OASIS Standard, 19 March 2007.

"WS-Trust 1.4", OASIS Standard incorporating Approved
Errata 01, 25 April 2002.

“OIO WS-Trust Deployment Profile Version 1.1”, Danish
Digitisation Agency.

“Assertions and Protocols for the OASIS Security Assertion
Markup Language (SAML) V2.0”, OASIS Standard, 15
March 2005.

“OIO Bootstrap Token Profile”, Danish Digitisation Agency.

“OIO Web SSO Profile V2.0”, Danish Digitisation Agency.

“OIO IDWS SOAP Profile”, Danish Digitisation Agency.

[Scenarios] “Identity-Based Web Services – Scenarios”, Danish
Digitisation Agency.

[ISIP] “Identity Selector Interoperability Profile V1.5”, Microsoft

Corporation.

[OIO-IDT] “OIO SAML Profile for Identity Tokens, V1.1”, Danish
Digitisation Agency.

References
<

