
OIO IDWS SOAP profile (V1.1)

 January 2017

Background and purpose

The purpose of this document is to define a web service profile based on the
SOAP protocol, where a client is authenticated and authorized to a web service
using a SAML Identity Token.

The profile is a replacement for the Liberty Basic SOAP Binding [LIB-SOAP] and
is intended for use in the Danish public sector for the purposes of
interoperability, consistency and security. The original Liberty profile was defined
in 2009 and in need of updates. Since Liberty Alliance no longer exists and the
profile has not been maintained under Kantara Initiative, the profile has now been
positioned under the OIO brand under governance of the Danish Digitisation
Agency (corresponding to the other OIO IDWS profiles).

The main elements of the profile are:

• Securing a SOAP invocation from a web service client (WSC) to web
service provider (WSP).

• Authentication and authorization is performed via a SAML token issued
by a Security Token Service trusted by the web service provider.

• Optionally, a client certificate is used for proving Holder-of-Key
relationships.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTIONAL" in this specification are to be interpreted as described in
RFC2119.

Main changes from the Liberty Profile

The main changes to this profile are:
• SOAP version 1.2 is used instead of version 1.1.
• The profile no longer mandates the specifics of SOAP faults.
• The Liberty framework header has been omitted.
• The <wsa:Action> header is no longer mandated.
• Requirements for a secure transport protocol has been added and message

confidentiality using encryption of individual attributes in SAML
Assertions is no longer recommended.

• Links to version 1.1.1 of the OASIS SAML Token Profile instead of
version 1.0.

Main Steps

To complete a scenario with this profile, three steps are typically executed:
1. The web service consumer (the client) requests a SAML token from a

Security Token Service (STS). This step is outside the scope of this profile
and just mentioned for completeness of the scenario1. Refer to the OIO
WS-Trust profile for details on this step.

2. The Security Token Service processes the request and responds with a
SAML token.

3. The web service client makes a SOAP web service call to the web service
provider providing the SAML token in the header.

4. The web service provider validates the request and responds.

The steps are illustrated on the figure below:

This profile specifies the details of step 3 above.

1	In a Danish Context this could be performed by calling the NemLog-in Security Token Service
using the WS-Trust protocol (over SOAP). The OIO WS-Trust profile (which NemLog-in
follows) can be found on Digitaliser.dk.	

Assumptions and Design Goals

• A Web Service Consumer (WSC) needs to invoke a Web Service Provider
(WSP) on behalf of a user / principal by sending a message and receiving
synchronously a response conforming to this profile.

• The WSC has already knowledge about the WSP’s meta data needed for
the invocation (end points, service interface etc.).

• The WSC is a rich client or web application.
• The WSC has already obtained a SAML security token from a Security

Token Service which the web service provider trusts:
o The SAML tokens complies to the OIO SAML Identity Token

Profile.
o The SAML token may be encrypted (<EncryptedAssertion>)

or in clear text. In case it is encrypted, it is assumed that the STS
knows the WSP’s public key (for encryption) via an out-of-band
mechanism.

o The SAML token may be a “Bearer” token or “Holder-of-key
token” (as defined by the SAML <SubjectConfirmation>
element).

o The SAML token is signed by the STS, and WSP has the STS
certificate installed for verification of the signature.

SOAP Binding

SOAP Version

This profile depends upon SOAP version 1.2 as specified in [SOAPv1.2].
Messages conformant to this specification SHOULD also be conformant to
[SOAPv1.2].

Messaging-specific Header Blocks
This section profiles the use of WS-Addressing SOAP Binding [WSAv1.0-SOAP]
and WS-Security [WSS] header blocks.

Along with header block descriptions are included processing rules the sender
must apply when including it in an outgoing message or when a receiver processes
it is part of an incoming message.

When sending a response to a request, the same header blocks and processing
rules apply unless stated otherwise below. The main difference is that response
messages do not include authentication assertions representing a user.

The following header blocks MUST be included in the SOAP header:

<wsa:MessageID>
<wsa:RelatesTo> (mandatory on response)
<wsse:Security>

The following headers MAY be included in the SOAP header: <wsa:To>

If included, the recipient SHOULD be able to process them according to the
requirements described below.

The <wsa:MessageID> Header Block

The <wsa:MessageID> header block is defined in [WSAv1.0-SOAP]. The value
of this header block uniquely identifies the message that contains it.

Every message MUST contain exactly one such header block.

<wsa:MessageID> Value Requirements

Values of the <wsa:MessageID> header block MUST satisfy the following
property:

Any party that assigns a value to a <wsa:MessageID> header block MUST ensure
that there is negligible probability that the party or any other party will accidentally
assign the same identifier to any other message.

The mechanism by which senders or receivers ensure that an identifier is unique is
left to implementations. In the case that a pseudorandom technique is employed,
the above requirement MAY be met by randomly choosing a value 160 bits in
length.

Note that [WSAv1.0] requires that <wsa:MessageID> values be absolute IRIs.

The <wsa:RelatesTo> Header Block
The <wsa:RelatesTo> header block is defined in [WSAv1.0-SOAP].

The header block MUST be included exactly once in responses to prior-received
request messages. If the RelationshipType attribute is included it MUST be set
to the value http://www.w3.org/2005/03/addressing/reply.

In response messages, the value of this header block MUST be set to the value of
the <wsa:MessageID> header block of the prior-received message.

The <wsa:To> Header Block

The <wsa:To> header block is defined in [WSAv1.0-SOAP]. The value of this
header block specifies the intended destination of the message.

Note
In the typical case that a WS-Addressing endpoint reference is used to address a
message, the value of this header block is taken from the <wsa:Address> of the
endpoint reference. If the <wsa:To> header block is not present, the value
defaults to http://www.w3.org/2005/03/addressing/role/anonymous; so,
when constructing a message, the header block can be omitted if this is the value
that would be used. This typically allows the <wsa:To> header block to be
omitted in responses during synchronous request-response message exchanges
over HTTP.

The header block is optional.

The <wsse:Security> Header Block

This section defines elements and processing rules for SOAP message security by
profiling the <wsse:Security> header block defined in [WSS]. Processing rules
defined in [WSS] and [WSS-STP] MUST be followed unless stated explicitly
otherwise below.

A single <wsse:Security> header block MUST be present and MUST have a
mustUnderstand attribute with the logical value of true. Further, it MUST
include a <wsu:Timestamp> with a <wsu:Created> element.

The value of the <wsu:Created> element SHOULD be within an appropriate
offset from local time. Absent other guidance, a value of 5 minutes MAY be used.

If the <wsu:Timestamp> element includes an <wsu:Expires> element, the
receiver MUST ensure that his local time is before that time.

To prevent message replay, receivers SHOULD maintain a message cache, and
check received messageID values against the cache. How long time a message
should be kept in the cache at the WSP is governed by deployment policy.

Message Confidentiality
To ensure confidentiality of messages a secure transport protocol with strong
encryption such as TLS 1.2 MUST be used.

Message Authentication and Integrity
Authentication and integrity of messages is established by means of digital
signatures applied to the SOAP message. Confidentiality, if required, SHOULD
be established by using a secure transport protocol such as TLS 1.2 or later.

The sender MUST create and include a single <ds:Signature> element in the
<wsse:Security> header block and this signature MUST reference:

• The SOAP <Body> element.
• All security tokens embedded directly under the <wsse:Security>

element via a <wsse:SecurityTokenReference> (see below), and
• All SOAP header blocks in the message defined in this profile. The

signature MAY reference other elements including header blocks not
mentioned in this profile.

If the sender has obtained a SAML holder-of-key Assertion vouching for the
signing key (see next section) it SHOULD be included in the security header.
Detailed requirements for using holder-of-key assertions are given below.

If the sender does not possess a holder-of-key Assertion but instead has an X.509
certificate, the certificate SHOULD be included in a
<wsse:BinarySecurityToken> element in the security header. In the message
signature, the <ds:KeyInfo> element SHOULD refer to this token via a
<wsse:SecurityTokenReference>.

The receiver MUST validate the message signature and security tokens including
test of validity period and trust in the token issuer. Depending on local policy, the
receiver SHOULD check revocation status of any certificates used to sign the
message and tokens.

Establishing trust in message signature key
The receiver can establish trust in the sender’s signature key in the following ways:

• The security header contains a SAML 2.0 holder-of-key assertion issued
by someone2 the receiver trusts, and the holder-of-key assertion includes a
key that can be used to verify the message signature. Note that the
assertion itself will be signed by the trusted issuer so the receiver has to be
able to verify the issuer’s signature. The sender’s signing key MAY be
symmetric or asymmetric.

• The message is signed with a key the receiver already knows / trusts for
example due to prior metadata exchange.

• The security header includes an X.509 certificate in a BinarySecurityToken
issued by a Certificate Authority the receiver trusts, and the certificate can
be used to verify the message signature.

Authentication Assertions
In request messages, the <wsse:Security> header block MAY include
authentication assertions in the form of SAML 2.0 assertions representing the
identity of the user / principal whose identity-based web service is being invoked.
Other types of security tokens (except for BinarySecurityTokens containing
certificates) SHOULD not be used and implementations of this profile are not
required to implement them.

The authentication assertion MUST be a SAML 2.0 assertion with subject
confirmation method being either urn:oasis:names:tc:SAML:2.0:cm:bearer
or urn:oasis:names:tc:SAML:2.0:cm:holder-of-key.

Authentication assertions MUST be signed by the issuer (e.g. Identity Provider,
STS or Security Token Service). Requirements for the content of authentication
assertions are not specified further in this profile.

Authentication assertions MUST be signed by the senders message by including
first a <wsse:SecurityTokenReference> in <wsse:Security> header block,
and then referencing the STR from the message signature using a
<ds:Reference> element. The security token reference MUST include a
<wsse:KeyIdentifier> with a ValueType of http://docs.oasis-
open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLID and specify
the ID of the SAML assertion. The <ds:Reference> element MUST use a
transform algorithm set to “http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wsssoap-message-security-
1.0#STR-Transform”.

The receiver MUST validate SAML 2.0 authentication assertions according to the
processing rules defined in [SAML-CORE] and [WSS-STP] including life time of
the token, audience restriction, the issuer’s signature over the token, trust in the
issuer and other processing rules defined by token profiles.

2	For example a Security Token Service.	

Additional Processing Rules for holder-of-key Assertions
When the authentication assertion has a subject confirmation method being
“holder-of-key” it means that the sender must prove possession of a key
mentioned in the assertion’s <SubjectConfirmationData> in order for the
recipient to rely on the assertion. The proof-of-possession of the key will be
achieved via the message signature and provides additional assurance that the
sender is allowed to use to the assertion in a web service invocation.

In this profile, a holder-of-key Assertion MUST in the
<SubjectConfirmationData> element include a key that can be used to verify
the message signature. Thus, the same key used for message authentication and
integrity is used to confirm the right to use the assertion for message
authorization purposes.

The message signature (i.e. the <ds:Signature> element) MUST refer to the
token with the subject confirmation key within the <ds:KeyInfo> element.

The receiver MUST check that the message is signed by same key mentioned in
the assertion’s subject confirmation element before relying on the assertion
content.

Overall Processing Rules

Overall processing of SOAP-bound messages follows the rules of the SOAP
processing model described in [SOAPv1.2]. A number of additional rules are
defined below. Notice that processing rules for individual elements are found in
the previous section.

Constructing and sending a SOAP message

 The sender MUST follow these processing rules when constructing and sending
an outgoing SOAP message:

1. The outgoing message MUST satisfy the rules for SOAP binding defined
in section “SOAP Binding”.

2. The outgoing message MUST satisfy the rules for WS-Addressing SOAP
binding given in [WSAv1.0-SOAP].

3. The outgoing message MUST include the mandatory header blocks
defined above.

4. Each header block included in the outgoing message MUST conform to
the processing rules defined for each header block.

Below is shown a procedure that illustrates how a conforming message can be
constructed (some low-level details have been omitted). It is assumed that the
sender has obtained all the information required to construct the message
including security tokens, signing keys and message payload. The procedure is not
normative and conforming messages can be constructed in other ways:

1. Construct the XML payload to be included in the SOAP Body.
2. Construct a SOAP envelope with <Header> and <Body>, and embed the

payload in the <Body>. Add a wsu:Id attribute3 to the <Body> element.
3. Add a <wsa:MessageID> header block (including a wsu:Id attribute)

which uniquely identifies the message; for example generate a 160-bit
pseudorandom number and embed it in a URI as follows:

http://spwsp.com/ffeeddccbbaa99887766
554433221100ffeebbcc

4. When generating a response, include a <wsa:RelatesTo> element
(including a wsu:Id attribute) containing the message ID of the request.

5. If required, add a <wsa:To> header block (including a wsu:Id attribute)
to identify the recipient.

6. Add a <wsse:Security> header block with a mustUnderstand=1
attribute.

a. Add a <wsu:Timestamp> element (including a wsu:Id attribute)
with a <wsu:Created> sub-element that includes the local time.

3	In the following, all wsu:Id attributes should contain a value that is unique
within the SOAP message.	

b. Include any security tokens (SAML Assertions and/or
BinarySecurityTokens containing X.509 certificates) in the security
header block. Ensure that they have unique id attributes so they
can be referenced (e.g. saml2:ID or wsu:Id).

c. Create a <wsse:SecurityTokenReference> element (including
a wsu:Id attribute) for each embedded SAML assertion. Add a
TokenType attribute stating the type of token
(http://docs.oasis-open.org/wss/oasis-wss-saml-
token-profile-1.1#SAMLV2.0) and a <wsse:KeyIdentifier>
sub-element containing the ID of the assertion.

d. Create a <ds:Signature> element in the security header:
i. Add a <ds:SignedInfo> element and embed

<ds:Reference> sub-elements with references to each of
the above header blocks and the SOAP Body. For each
reference, include element ID, digest method and digest
value. Set the Transform Algorithm to
http://www.w3.org/2001/10/xml-exc-c14n#

ii. Include a <ds:Reference> elements for each assertion
reference produced in step c) by using the ID of the
<SecurityTokenReference> element. Set the Transform
Algorithm set to http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wsssoap-
message-security-1.0#STR-Transform

e. Add a <ds:KeyInfo> element with a
<wsse:SecurityTokenReference> pointing to either a SAML
assertion or BinarySecurityToken vouching for the signature key.
The reference should include a <wsse:KeyIdentifier>
containing the ID of the token.

f. Compute the <ds:SignatureValue> over the
<ds:SignedInfo> using the signature key.

7. Send the message over a secure transport (TLS 1.2 or later).

Below is shown an example SOAP message that is compliant with this
specification:

<?xml version="1.0" encoding="UTF-8"?>
<s:Envelope
 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 >

 <s:Header>
 <wsa:MessageID wsu:Id="mid">f63d289c-cd9a-4c00-bf87-c4bad0310646</wsa:MessageID>

 <wsa:To wsu:Id="to">...</wsa:To>

 <wsse:Security mustUnderstand="1">
 <wsu:Timestamp wsu:Id="ts">
 <wsu:Created>2008-08-17T04:49:17Z</wsu:Created >
 </wsu:Timestamp>

 <!-- this is the holder-of-key token with the sender's certificate -->
 <saml2:Assertion
 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"
 Version="2.0"
 ID="sxJu9g/vvLG9sAN9bKp/8q0NKU="
 IssueInstant="2008-08-01T16:58:33Z">
 <saml2:Issuer>http://authority.example.com/</Saml2:Issuer>

 <!-- signature by the issuer over the assertion -->
 <ds:Signature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#sxJu9g/vvLG9sAN9bKp/8q0NKU=">
 <ds:Transforms>
 <ds:Transform
 Algorithm="http://www.w3.org/2000/09/xmldsig#envelopedsignature"/>
 </ds:Transforms>
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>TCDVSuG6grhyHbzhQFWFzGrxIPE=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>
 x/GyPbzmFEe85pGD3c1aXG4Vspb9V9jGCjwcRCKrtwPS6vdVNCcY5rHaFPYWkf+5
 EIYcPzx+pX1h43SmwviCqXRjRtMANWbHLhWAptaK1ywS7gFgsD01qjyen3CP+m3D
 w6vKhaqledl0BYyrIzb4KkHO4ahNyBVXbJwqv5pUaE4=
 </ds:SignatureValue>
 <ds:KeyInfo>
 <ds:X509Data>
 <!-- data identifying the signer's certificate -->
 </ds:X509Data>
 </ds:KeyInfo>
 </ds:Signature>

 <saml2:Subject>
 <saml:NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent">
 005a06e0-ad82-110d-a556-004005b13a2b
 </saml:NameID>

 <!-- Here comes the subject confirmation method saying this is a holder-of-key -->
 <saml2:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:holder-of-key">

 <!-- Here comes a NameID indicating the ID of the sender who must confirm with a key -->

 <saml2:NameID format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">
 http://wsc.someorg.com
 </saml2:NameID>

 <!-- Here comes info on the key to confirm with (same as signing key> -->
 <saml2:SubjectConfirmationData xsi:type="saml2:KeyInfoConfirmationDataType>
 <ds:KeyInfo>
 <ds:X509Data>
 <!-- Here comes the sender's X509 cert -->
 MIIB9zCCAWSgAwIBAgIQ...
 </ds:X509Data>
 </ds:KeyInfo>
 </saml2:SubjectConfirmationData>

 </saml2:SubjectConfirmation>
 </saml2:Subject>

 <!-- Entity which should consume the information in the assertion. -->
 <saml2:Conditions
 NotOnOrAfter="2008-08-01T21:42:43Z">
 <saml2:AudienceRestrictionCondition>
 <saml2:Audience>http://wsp.example.com</saml2:Audience>
 </saml2:AudienceRestrictionCondition>
 </saml2:Conditions>

 <saml2:AttributeStatement>
 ...
 </saml2:AttributeStatement>
 </saml2:Assertion>

 <!-- This SecurityTokenReference is used to reference the SAML Assertion from a ds:Reference -->
 <wsse:SecurityTokenReference
 xmlns:wsse="..." xmlns:wsu="..." xmlns:wsse11="..."
 wsu:Id="str1"
 wsse11:TokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0">
 <!-- A key idenfier with the SAML Assertion ID -->
 <wsse:KeyIdentifier
 ValueType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLID">
 sxJu9g/vvLG9sAN9bKp/8q0NKU=
 </wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <!-- in general include a ds:Reference for each wsa: header added according to SOAP binding -->

 <!-- include the MessageID in the signature -->
 <ds:Reference URI="#mid">...</ds:Reference>

 <!-- include the To in the signature -->
 <ds:Reference URI="#to">...</ds:Reference>

 <!-- include the Timestamp in the signature -->
 <ds:Reference URI="#ts">...</ds:Reference>

 <!-- include the SAML Assertion in the signature to avoid token substitution attacks -->
 <ds:Reference URI="#str1">
 <ds:Transform Algorithm="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wsssoap-
message-security-1.0#STR-Transform">
 <wsse:TransformationParameters>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 </wsse:TransformationParameters>
 </ds:Transform>
 </ds:Reference>

 <!-- bind the body of the message -->
 <ds:Reference URI="#MsgBody">
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>YgGfS0pi56pu...</ds:DigestValue>
 </ds:Reference>

 </ds:SignedInfo>

 <!-- include a security token reference for holder-of-key confirmation -->
 <ds:KeyInfo>
 <wsse:SecurityTokenReference
 xmlns:wsse="..." xmlns:wsu="..." xmlns:wsse11="..."
 wsu:Id="str2"
 wsse11:TokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0">
 <!-- A key idenfier with the SAML Assertion ID -->
 <wsse:KeyIdentifier
 ValueType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLID">
 sxJu9g/vvLG9sAN9bKp/8q0NKU=
 </wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>

 <ds:SignatureValue>
 HJJWbvqW9E84vJVQkjjLLA6nNvBX7mY00TZhwBdFNDElgscSXZ5Ekw==
 </ds:SignatureValue>
 </ds:Signature>
 </wsse:Security>
 </s:Header>

 <s:Body wsu:Id="MsgBody">
 <!-- here goes the body... -->
 </s:Body>

</s:Envelope>

Receiving and processing a SOAP message

The receiver of a SOAP message (either normal message or fault) MUST perform
the following tests on the header blocks:

Note: Although the steps are numbered sequentially, implementations MAY use a
different sequence as long as all tests are applied.

1. The incoming message MUST satisfy the rules for SOAP binding defined
in section “SOAP Binding”.

2. The incoming message MUST satisfy the rules given in [WSAv1.0-SOAP].
3. The incoming message MUST include all mandatory header blocks

defined above.
4. Each header block in the message (mandatory as well as optional) MUST

be tested according to the processing rules defined above.

Below is shown a procedure illustrating how messages can be verified and
processed (some details e.g. regarding signature processing have been omitted; for
details see the XML digital signature standard). It is assumed that the receiver has
all the information required to process the message including certificates of
trusted parties issuing tokens. The procedure is not normative and messages may
be processed / validated in other ways; implementations may for example
perform the steps in other sequence for efficiency reasons.

1. Receive the SOAP message over a secure transport protocol.

2. Validate that the following mandatory SOAP headers are present and
contain appropriate values: <wsa:MessageID> should include a unique
value.

3. If present, check that the content of the <wsa:To> header corresponds to
the recipient / endpoint.

4. Check the received message ID value against the local cache to determine
whether it has been received before (replay attacks). If not, add message
ID to cache to detect future replays.

5. Check that exactly one <wsse:Security> header is present:
a. Verify that the <wsu:Timestamp> is within acceptable limits of

local server time as defined by deployment policy.
b. Validate all embedded security tokens including that they are

signed by a trusted issuer, timestamps, audience restrictions etc.
(token validation rules vary with token type). Any proof-of-
possession requirements are handled below.

c. Check that the message signature (<ds:Signature>) contains
references to all header block defined above, to the SOAP body
and all included SAML assertions (via a
SecurityTokenReference). Verify that all digest values match
the referenced elements.

d. Verify the message signature using the key referenced in the
<ds:KeyInfo> element.

e. Check that the signing key is vouched-for via a security token
issued by a trusted party.

f. Verify that proof-of-possession requirements in tokens (e.g.
SAML holder-of-key SubjectConfirmation) are demonstrated via
the message signing key. Thus, the proof-of-possession key in
tokens must match the key that signed the message.

g. Check that all claims required by the service have been
demonstrated by the attached security tokens.

6. Discard message payload if any of the above checks fail and send a
meaningful error message to the recipient.

7. Handle message payload and send response over secure transport.

Note that the recipient may need to perform additional checks e.g. related to
authorization.

Security Considerations

Message integrity and authenticity is established by mandatory signing (and
subsequent verification) of the SOAP body, header blocks in this specification
and security tokens.

Message confidentiality is achieved using a secure transport protocol such as TLS
1.2 or similar.

Message freshness and prevention against replay attacks is established by
including unique message Ids that WSP’s should cache, time stamps and expiry of
tokens. How long time a message should be kept in the cache at the WSP is
governed by deployment policy.

Message authorization is established by including signed authentication assertions
in the form of SAML assertions issued by a trusted STS or Identity Provider.

Security tokens in the form of SAML 2.0 assertions are signed by the issuer and
sensitive attributes may be encrypted if deemed necessary via the mechanisms
described in [SAML-CORE] including encryption of the entire assertion, name
identifiers and individual attributes.

It is outside the scope of this profile to define how a Web Service Provider
performs local authorization decisions but the WSP may take the following
request parameters into consideration:

• The sender identity as established via the signature.
• The invoker / user identity as established via authentication assertions.
• The resource / service being accessed.
• Trust in the Security Token Service or Identity Provider that has issued

the authentication assertion.
• The assurance level established as part of the assertion.

References

[SOAPv1.2] "SOAP Version 1.2 Part 1; Messaging Framework (Second

Edition)",
W3C.
https://www.w3.org/TR/2007/REC-soap12-part1-20070427

[LIB-SOAP] “Liberty Basic SOAP Binding 1.0”.
https://digitaliser.dk/resource/414852

[WSS]

“Web Services Security: SOAP Message Security 1.1”, OASIS
Standard, 1 February 2006.

[WSAv1.0-SOAP] “WS-Addressing 1.0 SOAP Binding”, World Wide Web
Consortium W3C Recommendation (9 May 2006).

[SAML-CORE]

“Assertions and Protocols for the OASIS Security Assertion
Markup Language (SAML) V2.0”, OASIS Standard, 15 March
2005.

[WSS-STP]

“Web Services Security: SAML Token Profile 1.1.1”,
OASIS Standard, May 2012.
http://docs.oasis-open.org/wss-m/wss/v1.1.1/wss-
SAMLTokenProfile-v1.1.1.html

