

OIO Open ID Connect Profiles
Version 0.91

Status: Draft
Date: 06.09.2021

	

 - 2 -

1 INTRODUCTION .. 3
1.1 PREFACE ... 3
1.2 AUDIENCE ... 3
1.3 USAGE SCENARIOS ... 3
1.4 OVERVIEW OF SPECIFICATIONS .. 4

2 NOTATION AND TERMINOLOGY ... 5
2.1 TERMINOLOGY ... 5
2.2 CLIENT TYPES .. 5

3 SCENARIO OVERVIEW .. 8
3.1 OVERVIEW OF PROTOCOL FLOWS ... 9
3.2 PRE-REQUISITES ... 9
3.3 AUTHORIZATION MODELS ... 10

3.3.1 Scopes granted by end-user ... 10
3.3.2 Scopes granted by API provider (WSP) .. 12

4 CLIENT AUTHORIZATION PROFILE .. 13
4.1.1 Step 1: Client opens/redirects browser with authorization request 14
4.1.2 Step 2: Authorization endpoint receives authentication request 16
4.1.3 Step 3: Authorization server issues an authorization code 18
4.1.4 Step 4: Client receives the authorization code .. 18
4.1.5 Step 5: Client presents the authorization code at the token endpoint 19
4.1.6 Step 6: Token endpoint validates the authorization code and issues the tokens

requested ... 19
4.1.7 Step 7: Client validates response ... 20

5 TOKEN REQUEST PROFILE ... 22
5.1.1 Step 1: Client sends Token Request .. 22
5.1.2 Step 2: Token Server validates request and returns token 23

6 TOKEN RENEWAL AND SESSION MANAGEMENT 26
6.1 USING A REFRESH TOKEN ... 26
6.2 TOKEN REVOCATION .. 27
6.3 REFRESH TOKEN ROTATION .. 27
6.4 TOKEN LIFETIME .. 28
6.5 SESSION MANAGEMENT .. 28

6.5.1 Session management for web apps with backend ... 28
6.5.2 Session management for web apps without backend 29
6.5.3 Client-initiated logout ... 29

7 API ACCESS PROFILE .. 30

8 SECURITY REQUIREMENTS .. 32

9 REFERENCES ... 33

 - 3 -

1 Introduction	
1.1 Preface	

The	Danish	Agency	for	Digitisation	is	planning	to	establish	new	infrastructure	in	
NemLog-in3	to	support	native	apps	and	web	clients	with	token-based	access	to	ex-
ternal	APIs	based	on	profiles	of	OAuth	and	Open	ID	Connect.		

A	central	goal	for	NemLog-in3	is	to	provide	a	modern	authentication	and	authoriza-
tion	infrastructure	that	can	be	reused	as	common	building	block	across	many	busi-
ness	applications,	clients	and	APIs.	The	new	infrastructure	will	among	other	things	
include	an	Authorization	Server,	a	Token	Server	and	web	portals	for	registration	and	
management	of	clients	and	APIs.	The	infrastructure	will	ensure	authentication	of	the	
end-user	based	on	[NSIS]	levels	of	assurance	and	subsequent	authorization	of	the	
client	(e.g.	app	or	web	client)	based	on	end-user	consent	followed	by	issuance	and	
management	of	security	tokens	–	similar	to	how	the	existing	NemLog-in	solution	
currently	supports	web	applications	and	SOAP-services	based	on	SAML	and	WS-
Trust.		

The	first	step	in	realizing	a	new	infrastructure	is	to	establish	the	necessary	specifica-
tions	and	profiles	that	ensure	interoperability	and	a	high	level	of	security.	This	docu-
ment	contains	deployment	profiles	of	OpenID	Connect	[OIDC]	and	OAuth	2.0	detail-
ing	protocols	for	the	interaction	between	a	client	and	an	Authorization	Server,	To-
ken	Server	and	REST	APIs.	The	specifications	are	written	with	NemLog-in3	in	mind	
but	can	freely	be	used	elsewhere.		

The	profiles	can	be	used	with	three	types	of	clients:	native	apps,	web-applications	
with	a	backend,	and	Javascript	applications	with	no	backend.	

1.2 Audience	

The	document	is	written	for	a	technical	audience	including	architects,	security	pro-
fessionals	and	developers	already	familiar	with	OAuth	2.0,	Open	ID	Connect,	JWT,	
REST,	TLS	and	other	related	technologies	and	specifications.	

1.3 Usage	Scenarios	

This	profile	is	intended	for	use	within	Danish	public	sector	federations	where	infor-
mation	about	authenticated	identities	is	federated	across	service	providers.	The	goal	
is	to	achieve	standardization,	interoperability,	security	and	privacy,	while	enabling	
re-use	of	common	implementations.		

The	current	version	focuses	on	the	most	common	scenarios	involving	native	apps	
and	web	apps.	More	advanced	use	cases	may	however	be	added	later	–	including	
scenarios	with	federated	Authorization	Servers	or	APIs	exchanging	incoming	tokens	
for	downstream	invocation	of	other	APIs.	

 - 4 -

1.4 Overview	of	Specifications	

A	set	of	specifications	and	documents	will	be	developed,	covering	various	aspects	of	
App	scenarios:	

• This	document	covers	protocols	for	the	interaction	between	a	client	and	an	
Authorization	Server,	Token	Server	and	REST	APIs.	The	goal	is	to	get	Access	
Tokens	issued	to	a	client	which	then	be	used	to	gain	access	to	an	external	API.	

• The	OIO	JWT	Token	Profile	[OIO	JWT]	specifies	formats	for	JWT	tokens	used	
with	this	profile,	including	claims,	privileges	and	signatures.	It	is	inspired	by	
the	OIO	SAML	3.0	Web	SSO	profile	[OIOSAML]	and	OIO	Basic	Privilege	Profile	
[OIO-BPP].	

• Terms	and	conditions	for	using	the	NemLog-in	infrastructure	solution	will	be	
defined,	including	expected	behavior	of	Service	Providers,	terms	of	use,	re-
sponsibilities	etc.	

• A	guide	to	the	registration	portal	in	NemLog-in	will	describe	how	clients	and	
APIs	are	registered	and	governed	including	relevant	metadata,	certificates,	
scopes,	approval	processes	etc.	

The	first	two	specifications	in	the	above	list	are	independent	of	NemLog-in	and	can	
be	used	everywhere.	In	particular,	early	local	implementations	of	Authorization	and	
Token	Servers	can	use	them	in	order	to	pave	the	way	for	a	smooth	transition	from	a	
local	to	a	central	implementation	provided	by	NemLog-in.	This	approach	thus	mini-
mizes	the	risk	of	redoing	the	client	or	API	implementation	at	a	later	stage.	

The	last	two	documents	are	specific	to	NemLog-in’s	future	implementation	and	are	
not	on	critical	path	for	early,	local	implementations.		

	

	

 - 5 -

2 Notation	and	terminology	
The	key	words	"MUST",	"MUST	NOT",	"REQUIRED",	"SHALL",	"SHALL	NOT",	
"SHOULD",	"SHOULD	NOT",	"RECOMMENDED",	"NOT	RECOMMENDED",	"MAY",	and	
"OPTIONAL"	in	this	document	are	to	be	interpreted	as	described	in	BCP	14	
[RFC2119][RFC8174]	when,	and	only	when,	they	appear	in	all	capitals,	as	shown	
here.	

This	specification	uses	the	following	typographical	conventions	in	text:	<ns:Ele-
ment>,	Attribute,	Datatype,	OtherCode.	The	normative	requirements	of	this	
specification	are	individually	labeled	with	a	unique	identifier	in	the	following	
form:	[OIO-EXAMPLE-01].	All	information	within	these	requirements	should	be	
considered	normative	unless	it	is	set	in	italic	type.	Italicized	text	is	non-normative	
and	is	intended	to	provide	additional	information	that	may	be	helpful	in	implement-
ing	the	normative	requirements.	

2.1 Terminology	

This	specification	describes	flows	involving	the	following	actors:	

• Client	–	a	native	app	or	browser	app	acting	in	the	role	of	client	in	OAuth	and	
OpenID	Connect	sense.	It	provides	application	services	to	the	end-user,	re-
quests	access	tokens	and	consumes	one	or	more	external	(REST)	APIs	e.g.	for	
retrieving	or	updating	data	about	the	end-user.	

• SP	API	–	Service	Provider	API.	An	API	offered	by	a	Service	Provider	which	is	
protected	by	a	trusted	Authorization-	and	Token	Server	–	i.e.	all	API	access	
requires	a	signed	token	from	these.	The	API	Service	Provider	can	be	the	same	
or	a	different	organization	providing	the	client.	

• End-user	–	a	person	authorizing	client	access	on	his/her	behalf	regarding	de-
fined	scopes,	and	in	case	the	client	as	a	native	app	installs	the	app	on	his/her	
personal	mobile	device.	

• Authorization	Server	–	a	central	OAuth	2.0	infrastructure	component	(in	
the	future	delivered	by	NemLog-in).		

• Token	Server	–	OIDC/OAuth	2.0	infrastructure	component	(in	the	future	de-
livered	by	NemLog-in)	that	issues	tokens	which	provide	access	to	external	
APIs.	

2.2 Client	types	

Three	types	of	clients	are	supported	by	this	profile:	

a) Native	apps	installed	on	the	end-user	device	which	consume	external	REST	
APIs.	These	will	be	considered	public	clients	as	defined	in	OAuth	2.0.	It	is	as-
sumed	that	the	device	is	personal	and	that	access	and	refresh	tokens	for	the	
end-user	can	be	securely	stored	on	the	device;	if	this	is	not	the	case,	one	of	
the	other	variants	below	should	be	used.	

 - 6 -

b) Web	Applications	with	a	backend.	In	these	applications,	Javascript	code	is	
loaded	from	a	dynamic	Application	Server	that	also	has	the	ability	to	execute	
code	itself.	It	is	assumed	that	the	Application	Server	performs	the	OAuth	and	
OIDC	interactions	itself	and	keeps	tokens	stored	internally,	creating	a	sepa-
rate	session	with	the	browser	via	a	traditional	session	cookie	-	see	[BBA]	for	
additional	details.	The	Application	Server	(backend)	will	be	considered	a	con-
fidential	client	for	the	purposes	of	its	OAuth	interactions.	

c) Javascript	Applications	without	a	backend	(also	known	as	'Single	Page	Ap-
plications').	Here	the	entire	application	runs	in	the	browser,	and	the	client	
should	therefore	be	considered	a	public	client.	Note	that	to	be	able	interact	
with	Authorization	Servers	and	Token	Servers	from	different	domains,	these	
must	support	the	necessary	CORS	headers	in	order	to	avoid	same-origin	re-
strictions	imposed	by	browsers.	

The	vast	majority	of	the	flows	and	requirements	in	this	profile	apply	to	all	three	
types	of	clients,	and	where	requirements	do	depend	on	the	client	type,	it	will	be	
stated	explicitly.		The	illustrations	and	drawings	primarily	show	examples	of	clients	
being	native	apps,	since	this	scenario	has	been	the	main	reason	for	writing	this	spec-
ification.	

The	table	below	shows	important	properties	of	the	three	client	types	which	will	be	
explained	in	subsequent	chapters:	

Client	type	 Native	app	 Web/JS	app	with	a	
Backend	

JS	app	without	a	Backend	

Allowed	flows	 OAuth	2.0	Authorization	
code	flow		

OAuth	2.0	Authorization	
code	flow		

OAuth	2.0	Authorization	
code	flow		

PKCE	 Mandatory	 Mandatory	 Mandatory	

Token	storage	 Secure	device	storage	 In	backend	or	encrypted	
cookie	in	browser	

Browser	APIs	

Authorization	
Server	
Requirements	

Redirect	URI	registered	
and	exact	match	
required;	no	wildcards	
allowed	

Redirect	URI	registered	
and	exact	match	
required;	no	wildcards	
allowed	

CORS	headers	enabled;	

Redirect	URI	registered	and	
exact	match	required;	no	
wildcards	allowed	

Refresh	Token	
Policy	

Long-lived	refresh	
tokens	allowed	(not	
expiring)	if	revocation	
mechanism	
implemented	

Refresh	tokens	allowed	
up	to	8	hrs;	must	be	
invalidated	on	logout	

Refresh	tokens	allowed	up	
to	60	min	and	ONLY	with	
rotation	on	each	use.	

Client	
Authentication	

Not	possible	(public	
client);	use	re-direct	URI	
as	proof	

Backend	should	register	
credential	with	
Authorization	Server	
(confidential	client)	

Not	possible	(public	client);	
use	re-direct	URI	as	proof	

 - 7 -

	

Other	security	
req	

	
Limit	Javascript	
execution	to	set	of	
defined	origins	

Limit	Javascript	execution	
to	set	of	defined	origins	

Logout	
handling	

No	session	(only	refresh	
token	revocation).	

Backend	should	
send/receive	logout	
request	via	SAML	or	
OIDC	and	invalidate	
session	cookie	and	
tokens.	

App	should	poll	
Authorization	Server	(if	
possible)	via	a	frame	to	
detect	session	termination	
and	invalidate	tokens.	

 - 8 -

3 Scenario	overview	
The	figure	below	illustrates	the	main	components	and	their	interactions	when	a	cli-
ent	being	a	native	app	is	authorized	by	the	user:	

The	main	principles	are:	

• The	end-user	authenticates	to	a	central	Authorization	Server	via	a	separate	
user	agent	(e.g.	browser);	the	Authorization	Server	may	invoke	an	external	
SAML	Identity	Provider	which	provides	authentication	of	the	end-user	(e.g.	
based	on	MitID	as	shown	in	the	figure	or	something	else).	

• The	Authorization	server	issues	an	authorization	code	(according	to	the	
OAuth	authorization	code	flow).	

• The	Authorization	code	is	first	exchanged	for	a	set	of	tokens:	an	ID	Token	to	
be	consumed	within	the	client	App,	an	Access	Token	to	be	used	with	the	To-
ken	Server	and	a	Refresh	Token	also	used	with	the	Token	Server.	

• The	client	can	subsequently	exchange	the	Access	Token	for	a	Service	Token	
using	the	Token	Server–	the	Service	Token	is	simply	an	Access	Token	for	an	
external	API	protected	by	the	infrastructure.	

• Client	access	to	external	APIs	is	obtained	by	presenting	a	valid	security	token	
issued	by	the	Token	Server.	The	security	token	provides	the	claims	necessary	
for	fulfilling	the	API’s	access	control	policy.		

All	tokens	except	Refresh	tokens	are	short-lived	which	ensures	that	they	are	re-
newed	often	and	therefore	get	updated	frequently.	More	details	on	this	are	de-
scribed	in	chapter	6.	

	

 - 9 -

3.1 Overview	of	protocol	flows	

This	specification	defines	several	protocol	flows	where	a	client	interacts	with	an	ex-
ternal	Authorization	and	Token	Server	using	OAuth	2.0	and	OpenID	Connect.	Re-
quirements	for	the	individual	steps	are	profiled	to	ensure	interoperability,	narrow	
implementation	choices,	mandate	best	practice,	and	achieve	a	high	security	level	and	
compatibility	with	existing	models	and	infrastructure.		

The	main	flows	are:	

• Client	Authorization	where	the	client	is	installed/loaded	and	authorized	by	
the	user,	described	in	chapter	4.	

• Issuance	of	an	Access	Token	to	the	client	providing	access	to	an	external	SP	
API	(STS	flow),	described	in	chapter	5.	

• Renewal	of	expired	Access	Tokens	is	described	in	chapter	6.	Here,	also	the	
timeout	policies	and	revocation	of	tokens	is	described.	

• Using	an	Access	Token	to	get	access	to	an	SP	API	is	described	in	chapter	7.	

Note	also	that	generic	security	requirements	(e.g.	for	transport	security)	described	
in	chapter	8	apply	to	all	profiles.	

3.2 Pre-requisites	

A	number	of	pre-requisites	are	assumed	to	be	in	place	before	the	above	flows	can	be	
executed:	

• The	end-user	has	obtained	relevant	credentials	needed	for	authentication	
(e.g.	NemID,	MitID	or	credential	from	local	IdP).	

• In	case	the	client	is	a	native	app,	the	end-user	has	a	personal	device1.	Other	
flows	should	be	used	for	non-personal	devices	where	security	tokens	for	a	
specific	user	cannot	be	persisted	on	the	device.	The	native	app	has	been	in-
stalled	on	the	end-user	device	(e.g.	from	a	public	app	store	or	a	closed	app	
store).	

• The	client	and	SP	API	have	been	registered	and	configured	with	the	central	
Authorization	Server	including	relevant	parameters	/	metadata:	

o Relevant	identifiers	(e.g.	EntityIDs)	have	been	assigned	for	client	and	
API	instances	such	that	they	can	be	referenced	in	tokens	and	protocol	
messages.	

o The	type	of	client	has	been	registered	(see	section	2.1	for	details).	
o The	client	must	have	registered	a	unique	redirect	URI	for	returning	

the	authorization	response	to	the	client,	and	the	URI	scheme	should	
be	based	on	a	domain	name	that	is	under	the	control	of	the	service	
provider	of	the	client.	More	details	are	described	in	chapter	4.	

1 The	profiles	assume	that	security	tokens	can	be	persisted	in	Apps	including	a	long-lived	Refresh-to-
ken.	The	risk	profile	of	the	App	and	user	terms	may	define	whether	it	is	acceptable	to	do	this	on	a	de-
vice	shared	in	a	family	or	shared	among	colleagues	in	workplace	environment.	

 - 10 -

o Necessary	privileges	and	scopes	have	been	defined	for	the	client	and	
SP	API	such	that	they	can	be	requested	by	the	client	and	issued	in	to-
kens.	See	section	3.3	for	details.	

o Claims	sets	have	been	defined	during	registration.	The	OIO	JWT	pro-
file	[OIO	JWT]	defines	mandatory	claims	but	any	optional	claims	
needed	by	an	app	or	API	should	be	registered.	

o Metadata	and	certificates	have	been	exchanged	in	advance	as	part	of	
trust	establishment.		

§ Native	app	clients	have	been	configured	with	(pinned)	TLS	
server	certificates.	

§ Clients	have	been	configured	with	trusted	token	signing	certifi-
cates,	such	token	signatures	can	be	securely	validated.		

§ Confidential	clients	have	registered	their	secret	or	certificate	
for	client	authentication.	

§ Clients	have	registered	certificates	if	they	support	encrypted	
ID	tokens.		

§ SP	APIs	have	registered	certificates	if	they	support	encrypted	
Service	Tokens.	

o Web	clients	with	a	backend	supporting	HTTP-based	(front-channel)	
logout	must	register	a	logout	URI	as	part	of	the	client	registration	pro-
cess.	

The	actual	registration	process	which	establishes	these	pre-conditions	will	not	be	
described	in	this	document	as	it	is	highly	implementation	specific.	For	example,	in	
NemLog-in	the	registration	will	likely	be	based	on	the	existing	administration	portal.		

3.3 Authorization	models	

This	section	describes	the	different	authorization	models.	A	central	design	goal	has	
been	to	reuse	the	existing	mechanisms	for	web	applications	and	SOAP	web	services	
(in	particular	the	OIO	Basic	Privilege	Profile)	such	that	API	providers	can	reuse	ex-
isting	logic	and	access	control	policies.	Other	authorization	models	can	be	added	
later	if	needed.	

3.3.1 Scopes granted by end-user

A	fundamental	design	principle	in	OAuth	(and	hence	this	profile)	is	that	the	end-user	
should	authorize	access	granted	to	the	client	by	authenticating	to	the	Authorization	
Server	and	providing	explicit	consent	for	the	client	to	act	on	his/her	behalf.	This	is	
accomplished	by	including	a	set	of	OAuth	scopes	in	the	authorization	request	from	
the	client,	which	allows	the	Authorization	Server	to	obtain	the	necessary	consent	
from	the	end-user	and	reflect	it	in	issued	tokens.	This	consent	both	covers	the	au-
thorization	to	obtain	an	OIDC	ID	Token	as	well	as	authorization	to	invoke	external	
APIs	(SP	API).	

Therefore,	the	authorization	request	(see	next	section)	has	to	contain	sufficient	
scopes	to	cover	all	APIs	and	scopes	which	the	client	needs	to	invoke	on	the	end-
user’s	behalf.	If	the	client	at	a	later	stage	(e.g.	a	later	version	of	an	app)	needs	further	

 - 11 -

access	(new	API	or	scope),	a	fresh	authorization	request	is	required	with	the	addi-
tional	scopes	added	–	which	the	user	can	then	consent	to.	

As	specified	in	the	JWT	Token	Profile	[OIO	JWT],	Access	Tokens	for	SP	APIs	will	con-
tain	privileges	according	to	the	model	defined	in	OIO	Basic	Privilege	Profile.	Privi-
leges	are	URIs	defined	by	a	Service	Provider	representing	a	specific	access	with	that	
Service	Provider.		Thus,	the	meaning,	granularity	and	consent	text	of	privileges	is	de-
fined	entirely	by	the	Service	Provider	-	the	infrastructure	is	just	a	mediator.	

It	is	assumed	that	privileges	to	be	requested	and	asserted	in	tokens	will	be	regis-
tered	in	advance	(by	the	Service	Provider)	with	the	Authorization	and	Token	Server	
in	as	indicated	in	the	example	below:	

Privilege info Example values of privilege metadata registered

SP EntityID https://ngdp.digst.dk

Privilege URI https://ngdp.digst.dk/priv/read_mail

OAuth scope
shorthand2

xq7j

Description This privilege grants access to read mail from a citizen inbox in the
NGdP solution.

UI Context text
(DK)

“Vil du give samtykke til, at denne App tilgår din Digitale Post fra det
offentlige?”

The	Authorization	Server	registration	process	ensures	uniqueness	of	EntityIDs,	priv-
ileges	URIs,	scope	shorthands	etc.	and	ensures	proper	ownership	(e.g.	an	admin	can	
only	administer	relevant	Apps	and	APIs).	

Thus,	if	the	client	includes	the	xq7j	shorthand	in	the	scope	parameter	(see	chapter	
4),	the	Authorization	Server	will	prompt	the	end-user	for	consent	to	authorize	the	
client	to	access	his	mail	in	the	NgDP	solution,	and	if	consent	is	granted,	the	client	will	
subsequently	be	able	to	obtain	an	Access	Token	for	the	relevant	SP	API,	where	the	
associated	privilege	URI	https://ngdp.digst.dk/priv/read_mail	is	included	with	
scope	of	the	citizen.	

Below	is	given	an	example	of	the	resulting	JSON	structure	within	the	Access	Token	
based	on	the	OIO	JWT	Profile	[OIO	JWT],	where	the	privilege	is	included	with	scope3	
of	“1202801024”	(CPR	number	of	citizen):

2 In order to keep requests small enough to fit in HTTP headers used with the OIDC authentication re-
quest, privileges are suggested to have a unique short-hand such that the entire URI is not necessary.
3 Note that the scope in OIO Basic Privilege Profile should not be confused with scope in OAuth / OIDC.
The first is the context of a privilege (e.g. person or organization the privilege applies to) and the latter
corresponds to a given access requested (similar to a privilege in OIO BPP).

 - 12 -

A	similar	model	can	be	used	for	other	scopes	and	for	data	restrictions;	see	the	OIO	
JWT	Profile	[OIO	JWT]	for	details.	

3.3.2 Scopes granted by API provider (WSP)

In	addition	to	scopes	granted	by	the	end-user,	the	Authorization	Server	may	allow	
the	API	provider	to	grant	privileges/scopes	to	certain	clients	independent	of	the	
user.		

This	is	similar	to	the	current	mechanism	in	the	NemLog-in	STS,	where	a	WSP	(Web	
Service	Provider)	can	define	a	number	of	privileges,	which	can	then	be	granted	to	
certain	Web	Service	Consumers	–	i.e.	clients	of	the	WSP.	The	assignment	of	privi-
leges	is	done	by	the	WSP	administrator	in	the	NemLog-in	administration	portal.		

A	similar	model	can	be	used	with	clients	and	APIs	–	acting	as	WSC	and	WSP	respec-
tively.	It	can	be	used	to	grant	specific	access	only	to	certain	clients.	

This	model	requires	that	the	Authorization	Server	is	able	to	securely	authenticate	
the	client.	Since	a	public	native	apps	cannot	have	secrets	embedded	in	their	installa-
tion	package	(they	would	be	trivial	to	extract	by	attackers),	the	authentication	of	the	
native	apps	must	be	performed	using	a	claimed	“https”	scheme	URI	redirection de-
scribed	in	[RFC8252].	This	prevents	other	App	instances	from	claiming	URIs	from	
domains	they	don’t	control.	

Privileges	granted	by	the	API	provider	will	be	represented	in	the	same	way	as	user-
granted	privileges	except	they	have	a	different	scope	being	the	client	ID	instead	of	
the	end-user	CPR-number:	

	

	

	

{
 "privilegegroups" : [
 {
 "privilege" : "https://ngdp.digst.dk/priv/read_mail",
 "scope" : "urn:dk:gov:saml:cprNumberIdentifier:1202801024"
 }
]
}

{
 "privilegegroups" : [
 {
 "privilege" : "https://ngdp.digst.dk/priv/read_mail",
 "scope" : "https://digst.dk/ngdp/apps/borger_dk_client",
 }
]
}

 - 13 -

4 Client	Authorization	Profile	
This	chapter	specifies	a	profile	of	OpenID	Connect	(using	the	[OAuth]	2.0	authoriza-
tion	code	grant)	used	for	the	initial	authorization	of	the	client.	The	profile	is	primar-
ily	based	on	[OIDC],	[OAuth]	and	[RFC8252].

The	figure	below	illustrates	the	main	steps	where	the	client	is	a	native	app	–	the	
same	flow	is	used	by	all	client	types:	

The	main	steps	of	the	flow	are:	

1. The	client	opens/redirects	a	browser	with	an	authorization4	request.		
2. The	Authorization	endpoint	receives	the	authorization	request,	authenticates	

the	user,	and	obtains	end-user	consent	for	the	requested	scopes.	Authenticat-
ing	the	user	may	involve	chaining	to	other	authentication	systems	(e.g.	an	ex-
isting	SAML	IdP).		

3. The	Authorization	server	issues	an	authorization	code	to	the	redirect	URI.		
4. The	client	receives	the	authorization	code	from	the	redirect	URI.		
5. The	client	presents	the	authorization	code	at	the	token	endpoint.		
6. The	token	endpoint	validates	the	authorization	code	and	issues	the	tokens	re-

quested.		
7. The	client	validates	the	response	(not	shown	on	figure	above).	

[OIDC-01]	

The	client	authorization	protocol	MUST	follow	the	[OAuth]	2.0	authorization	
code	grant	type	as	defined	in	section	4.1	of	[OAuth].	Unless	otherwise	stated	

4 Note that in [OIDC] this is called an authentication request, whereas OAuth calls it an authorization re-
quest.

 - 14 -

explicitly,	the	requirements	from	this	specification	apply	directly.	
	

4.1.1 Step 1: Client opens/redirects browser with authorization5 request

[OIDC-02]	

The	request	parameters	in	the	authorization	request	MUST	follow	the	re-
quirements	specified	in	the	table	below:	

Parameter Man-
da-
tory

Usage

scope Y MUST contain the ‘openid’ scope value as well as scopes for external APIs
which the user should authorize. See section 3.3 for a description of the au-
thorization model.

response_type Y MUST be set to ‘code’

client_id Y MUST be set to the client identifier (Entity ID) pre-registered with the Author-
ization Server.

redirect-uri Y The client MUST use a claimed “https” scheme URI redirection when sup-
ported by the client platform6 (e.g. “https://app.example.com/oauth2redi-
rect/example-provider”) and the URI MUST NOT contain any wildcards. This
ensures the identity of the destination client to the authorization server by
the operating system.

If the mechanism is not supported, the client SHOULD instead uses a “custom
URL scheme” for URI redirection, and it MUST be URI scheme based on a do-
main name under control of the client developer as described in RFC7595.

It is REQUIRED that a unique redirect URI is used for each authorization server
used by the client.

state Y To mitigate CSRF-style attacks over inter-app URI communication channels (so
called "cross-app request forgery"), it is REQUIRED that the client includes a
high-entropy secure random number (>=128 bit) in the "state" parameter of
the authorization request.

code_challenge Y The client MUST use the Proof Key for Code Exchange ([PKCE], RFC7636) ex-
tension to OAuth and include a code_challenge being a high-entropy crypto-
graphic random STRING containing 128 characters. The code_challenge is a
obtained as hash of the secret code_verifier: code_challenge = BASE64URL-
ENCODE(SHA256(ASCII(code_verifier)))

code_
challenge_method

Y MUST be ‘S256’ (see [PKCE]).

nonce Y MUST include a high-entropy secure random number (>=128 bit) in order to
prevent ID token replay.

5 Actually, it is both an authentication and authorization request.
6 This is supported both on iOS and Android 6.0 and above.

 - 15 -

acr_values N String that specifies the acr value that the Authorization Server is being re-
quested to use for processing this Authentication Request. In this profile NSIS
levels are used, and the minimum NSIS level is specified as one of the below
NSIS levels:

https://data.gov.dk/concept/core/nsis/loa/Low
https://data.gov.dk/concept/core/nsis/loa/Substantial
https://data.gov.dk/concept/core/nsis/loa/High

The Authorization Server SHOULD ensure that the end-user is authenticated
at least to the specified NSIS level.

Note:	PKCE	is	a	proof-of-possession	extension	to	OAuth	2.0	that	protects	the	authori-
zation	code	from	being	used	if	it	is	intercepted.	The	extension	has	the	client	generate	
a	secret	verifier;	it	passes	a	hash	of	this	verifier	in	the	initial	authorization	request	
and	must	present	the	unhashed	verifier	when	redeeming	the	authorization	code.	An	
attacker	that	intercepted	the	authorization	code	would	not	be	in	possession	of	this	
secret,	rendering	the	code	useless.	

[OIDC-03]	

The	following	request	parameters	SHOULD	NOT	be	used	with	this	profile:	
display	,	response_mode,	max_age7,	and	id_token_hint.	

Other	request	parameters	defined	in	[OIDC]	and	[OAuth]	and	not	mentioned	
here	are	all	OPTIONAL.	

	[OIDC-04]	

OAuth	2.0	authorization	requests	from	the	client	MUST	be	sent	through	ex-
ternal	user	agents	(i.e.	not	embedded	web	views	in	a	native	app).	Otherwise,	
the	native	app	may	be	able	to	copy	user	credentials	and	cookies.	In-app	
browser	tabs	MAY	be	used	if	they	separate	security	context	from	the	native	
app.	

	

Note:	the	above	requirement	may	imply	that	the	user	has	an	authenticated	session	
in	his/her	browser	with	an	IdP,	even	after	the	app	has	been	closed.	The	NemLog-in	
IdP	currently	does	not	support	authentication	without	session	establishment.	

Example	authentication	request:	

The	following	is	the	non-normative	example	request	that	would	be	sent	by	the	User	
Agent	to	the	Authorization	Server	in	response	to	the	HTTP	302	redirect	response	by	
the	client	(with	line	wraps	within	values	for	display	purposes	only):	

 GET /authorize?

7 This parameter is not necessary since the profile requires ‘fresh’ user authentication.

 - 16 -

 response_type=code
 &scope=openid
 &client_id=https%3A%2F%2Fclient.example.org%2Fcb
 &state=af0ifjsldkj
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb HTTP/1.1
 &code_challenge=qjrzSW9gMiUgpUvqgEPE4_-8swvyCtfOVvg55o5S_es
 &code_challenge_method=S256

 Host: server.example.com

4.1.2 Step 2: Authorization endpoint receives authentication request

[OIDC-05]	

The	Authorization	Server	MUST	validate	the	request	as	specified	in	section	
3.1.2.2	(Authentication	Request	Validation)	of	[OIDC]	including	that	all	re-
quired	parameters	mentioned	above	(section	4.1.1)	are	present.	Hence,	the	
scope	parameter	MUST	contain	the	openid scope	value.	
	
As	specified	in	[OAuth],	Authorization	Servers	SHOULD	ignore	unrecognized	
request	parameters.	

	
[OIDC-06]	

If	the	client	is	a	confidential	client	(e.g.	a	web	application	with	a	backend),	it	
MUST	be	authenticated	by	the	Authorization	Server	using	the	registered	cre-
dential.	Other	(public)	client	types	SHOULD	NOT	be	authenticated.	

[OIDC-07]	

The	Authorization	Server	MUST	reject	a	redirect_uri	in	requests	that	doesn’t	
exactly	match	the	one	that	was	previously	registered.		

	
Note:	As	mentioned	under	prerequisites,	the	client	must	register	its	complete	redi-
rect	URI	with	the	Authorization	Server	and	it	must	be	unique	per	Authorization	
server.	
	
[OIDC-08]	

The	Authorization	Server	MUST	record	the	[PKCE]	challenge	and	method	in	
the	request	and	reject	requests	not	containing	these	parameters.	

[OIDC-09]	

If	the	request	is	valid,	the	Authorization	Server	SHOULD	authenticate	the	
end-user	at	the	NSIS	level	of	assurance	defined	in	the	request8.	If	the	client	

8 As mentioned previously, an external authentication server (e.g. SAML IdP) may be used for this pur-
pose.

 - 17 -

type	is	a	native	app,	it	MUST	be	a	fresh	authentication	of	the	end-user	(e.g.	
SSO	is	not	permitted	here).	

 - 18 -

[OIDC-10]	

After	successful	authentication	of	the	end-user,	the	Authorization	Server	
MUST	obtain	(and	securely	store)	user	consent	to	the	scopes	defined	in	the	
request.	

The	user	SHOULD	be	able	to	decide/grant	consent	individually	per	scope	in	
the	request	(such	that	it	is	not	all	or	nothing).	

	

4.1.3 Step 3: Authorization server issues an authorization code

[OIDC-11]	

After	successful	authentication	of	the	end-user	and	granted	consent,	the	Au-
thorization	Server	MUST	issue	an	authorization	code,	and	the	Authorization	
Response	MUST	return	the	parameters	defined	in	Section	4.1.2	of	[OAuth]	by	
adding	them	as	query	parameters	to	the	redirect_uri	specified	in	the	Author-
ization	Request	using	the	application/x-www-form-urlencoded	format.		
	
For	web	clients,	the	Authorization	Server	MUST	include	a	session_state	pa-
rameter	in	order	to	enable	session	management	(see	chapter	6)	as	described	
in	the	OIDC	Session	Management	Specification.		

The	following	is	a	non-normative	example	successful	response	using	this	flow	(with	
line	wraps	within	values	for	display	purposes	only):	

HTTP/1.1 302 Found
 Location: https://client.example.org/cb?
 code=SplxlOBeZQQYbYS6WxSbIA
 &state=af0ifjsldkj
 &nonce=a8jf0dfjslkai
 &session_state=aa2i4jslkdu

4.1.4 Step 4: Client receives the authorization code

[OIDC-12]	
The	client	MUST	validate	the	response	according	to	[OAuth]	especially	Sec-
tions	4.1.2	and	10.12.	

	
[OIDC-13]	

The	client	MUST	validate	state	and	nonce in	responses	and	MUST	reject	re-
sponses	if	they	do	not	match	a	pending	outgoing	authorization	request.	The	
client	MUST	further	compare	the	redirect	URI	in	the	response	to	the	value	

 - 19 -

used	in	the	authorization	request	(step	1)	and	MUST	verify	that	the	URI	on	
which	the	authorization	response	was	received	exactly	matches	it.	

4.1.5 Step 5: Client presents the authorization code at the token endpoint

[OIDC-14]	

The	client	MUST	send	a	token	request	to	the	token	endpoint	to	obtain	a	token	
response	as	described	in	Section	3.2	of	[OAuth],	using	the	grant_type	value	
authorization_code.	
	

[OIDC-15]	
The	client	MUST	include	the	PKCE	code_verifier	secret	matching	the	
code_challenge	sent	in	step	1.		

	
The	following	is	a	non-normative	example	of	a	Token	Request	(with	line	wraps	
within	values	for	display	purposes	only):	
	
 POST /token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code&
 code=SplxlOBeZQQYbYS6WxSbI&
 redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb&
 code_verifier=JDu29BkSH99283aS
 client_id=https%3A%2F%2Fclient.example.org

	

4.1.6 Step 6: Token endpoint validates the authorization code and issues the to-
kens requested

[OIDC-16]	

The	Token	endpoint	MUST	validate	the	Token	Request	as	described	in	
OpenID	Connect	Core	section	3.1.3.2	including	the	presented	authorization	
code,	PKCE	code_verifier	and	value	of	redirect_uri parameter.	

	
[OIDC-17]	

The	Token	endpoint	MUST	issue	an	ID	Token,	an	Accces	Token	and	MAY	is-
sue	a	Refresh	Token	according	to	section	3.1.3.3	of	OpenID	Connect	Core.		

	
[OIDC-18]	

 - 20 -

The	ID	Token	MUST	be	a	JWT	token	according	to	the	OIO	JWT	Profile	[OIO	
JWT]	and	include	an	at_hash	claim.		Further,	the	ID	Token	MUST	be	en-
crypted,	if	the	client	has	registered	a	certificate	with	the	Authorization	Server	
for	this	purpose.	The	Access	Token	and	Refresh	Tokens	are	opaque	and	
SHOULD	include	at	least	128	bit	of	entropy.	

4.1.7 Step 7: Client validates response

	
[OIDC-19]	

The	client	MUST	validate	the	response	according	to	section	3.1.3.5	(Token	
Response	Validation)	of	OIDC	Core.	In	addition,	the	at_hash	value	MUST	be	
validated	as	specified	in	section	3.1.3.6	of	OIDC	to	ensure	binding	between	
Access	Token	and	ID	Token.	

[OIDC-20]	

The	client	MUST	validate	that	the	signature	of	the	ID	Token	is	valid,	that	is	
uses	an	allowed	signing	algorithm	defined	in	the	OIO	JWT	Profile	[OIO	JWT],	
and	with	a	pinned9	token	signing	certificate	of	the	Authorization	Server.	It	
MUST	also	verify,	that	it	is	the	audience	(aud claim)	of	the	token.	

[OIDC-21]	

The	client	MUST	check	that	the	resulting	NSIS	assurance	level	in	the	ID	Token	
lives	up	to	its	requirements	as	well	as	other	claims	in	the	ID	token	required	
by	the	client.	

The	following	is	a	non-normative	example	of	a	successful	Token	Response10:	

HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token": "SlAV32hkKG",
 "token_type": "Bearer",
 "refresh_token": "8xLOxBtZp8",
 "expires_in": 3600,
 "id_token": "eyJhbGciOiJSUzI1NiIsImtpZCI6IjFlOWdkazcifQ.ewogImlzc
 yI6ICJodHRwOi8vc2VydmVyLmV4YW1wbGUuY29tIiwKICJzdWIiOiAiMjQ4Mjg5
 NzYxMDAxIiwKICJhdWQiOiAiczZCaGRSa3F0MyIsCiAibm9uY2UiOiAibi0wUzZ
 fV3pBMk1qIiwKICJleHAiOiAxMzExMjgxOTcwLAogImlhdCI6IDEzMTEyODA5Nz
 AKfQ.ggW8hZ1EuVLuxNuuIJKX_V8a_OMXzR0EHR9R6jgdqrOOF4daGU96Sr_P6q
 Jp6IcmD3HP99Obi1PRs-cwh3LO-p146waJ8IhehcwL7F09JdijmBqkvPeB2T9CJ
 NqeGpe-gccMg4vfKjkM8FcGvnzZUN4_KSP0aAp1tOJ1zZwgjxqGByKHiOtX7Tpd

9 E.g. part of the App configuration.
10 Example from OpenID ID Connect Core – the shown id_token is not OIO JWT token compliant if de-
coded.

 - 21 -

 QyHE5lcMiKPXfEIQILVq0pc_E2DzL7emopWoaoZTF_m0_N0YzFC6g6EJbOEoRoS
 K5hoDalrcvRYLSrQAZZKflyuVCyixEoV9GfNQC3_osjzw2PAithfubEEBLuVVk4
 XUVrWOLrLl0nx7RkKU8NXNHq-rvKMzqg"
 }

 - 22 -

5 Token	Request	Profile	
This	chapter	describes	a	token	request	profile	building	on	the	OAuth	2.0	client	cre-
dentials	grant	flow.		In	the	profile,	the	client	requests	a	Service	Token11	(for	a	spe-
cific	SP	API	and	with	scopes	covering	this	API)	and	authorizes	the	request	using	an	
Access	Token	for	the	Token	Service	issued	during	the	Client	Authorization	Profile	
described	in	chapter	4.	Thus,	a	generic	token	is	exchanged	for	a	specific	token.	If	
multiple	APIs	are	to	be	accessed	by	the	client,	multiple	tokens	must	be	requested.		

The	Token	Server	verifies	that	the	presented	Access	Token	is	valid,	and	that	the	end-
user	has	previously	authorized	the	client	instance	(holding	the	Access	Token)	to	use	
the	requested	scopes	(via	the	consent	gathered	in	step	3	of	the	Client	Authorization	
Profile).	If	the	request	is	successful,	the	Token	Server	issues	a	new	token	(Service	
Token)	for	the	API	according	to	the	[OIO	JWT]	Profile,	where	the	scopes	are	encoded	
as	privileges	in	a	JSON	structure.	See	also	section	3.3	for	further	detail.	

	

5.1.1 Step 1: Client sends Token Request

[OIDC-51]	

The	token	request	MUST	use	the	[OAuth]	2.0	client	credentials	grant	type	as	
defined	in	section	4.4	of	[OAuth].	Unless	otherwise	stated	explicitly,	the	re-
quirements	from	the	[OAuth]	specification	apply	directly.

	 	

11 The	Service	Token	is	an	Access	Token,	but	has	a	different	name	to	distinguish	it	from	the	Access	To-
ken	issued	in	the	App	Authorization	Profile	described	in	chapter	4.

 - 23 -

[OIDC-52]	

The	request	parameters	in	the	token	request	MUST	fulfill	the	requirements	
specified	in	the	table	below:	

Parameter Man-

da-
tory

Usage

client_id Y Value MUST be set to the client identifier (Entity ID) pre-registered with the
Authorization Server.

sub Y Value MUST be the sub field (user identifier) from an ID Token issued in the
App Authorization Flow described in chapter 4.

grant_type Y Value MUST be client_credentials

scope Y Value MUST contain list of scope values belonging to at most one external SP
API registered with the Authorization Server.

[OIDC-53]	

The	token	request	MUST	be	authorized	using	an	Access	Token	obtained	in	
previous	Client	Authorization	Flow	and	provided	via	the	HTTP	Authorization
header	using	the	Bearer	or	Holder-of-key	authentication	scheme.	See	chapter	
4	and	7	for	details.	

A	sample	Token	Request	is	shown	below:

POST /token HTTP/1.1
Host: server.example.com
Authorization: Bearer czZCaGRSa3F0MzpnWDFmQmF0M2JW
Content-Type: application/x-www-form-urlencoded

client_id=https%3A%2F%2Fclient.example.org%2Fcb
&sub=https%3A%2F%2Fdata.gov.dk%2Fmodel%2Fcore%2Feid%2Fperson%2Fuuid%2F
123e4567-e89b-12d3-66554400
&grant_type=client_credentials
&scope=xq7j%20uq2ja%20sdh34

5.1.2 Step 2: Token Server validates request and returns token

[OIDC-54]	

The	Token	Server	MUST	verify	that	the	Access	Token	is	valid	and	is	issued	to	
a	client	instance	with	the	stated	client_id	type.	

	

 - 24 -

[OIDC-55]	
The	Token	Server	MUST	verify	the	request,	including	that	requested	scope	
values	have	previously	been	consented	by	the	end-user	before	the	Access	To-
ken	was	issued.		If	a	Holder-of-key	token	is	presented,	the	Token	server	
MUST	validate	the	Holder-of-key	relation	(see	chapter	7	for	details).	

[OIDC-56]	

If	the	request	is	successful,	the	Token	Server	MUST	issue	a	Service	Token	ac-
cording	to	[OIO	JWT]	Profile	with	the	requested	scopes	converted	to	privi-
leges.	This	includes	both	user-granted	scopes	and	Service	Provider	granted	
scopes	(see	section	3.3	for	details.)	

[OIDC-57]	

The	Service	Token	SHOULD	have	a	validity	period	of	maximum	1	hour.	

[OIDC-58]	

The	Service	Token	MUST	be	encrypted	if	the	SP	API	provider	has	registered	a	
certificate	for	this	purpose	with	the	Authorization	Server.	

[OIDC-59]	

The	returned	token	MAY	be	a	Bearer	token	or	a	Holder-of-key	token	depend-
ing	on	the	client	type	and/or	preferences	and	capabilities	agreed	(out-of-
band)	between	the	client,	the	Token	Server	and	the	API	provider.	The	token	
type	MUST	be	indicated	in	the	token_type	field	(see	example	below).	
Holder-of-key	tokens	MUST	ONLY	be	issued	to	confidential	clients	which	can	
protect	a	private	key	and	such	tokens	MUST	include	a	cnf	claim	that	contains	
a	SHA-256	thumbprint	of	the	client	certificate	(via	the	x5t#S256	element).	See	
[OIO-JWT]	for	details	of	this	claim	and	also	[HOK].	This	will	allow	a	recipient	
of	the	token	to	validate	that	the	client	is	in	possession	of	the	specified	key.	

A	sample	(bearer)	Token	Response	is	shown	below12	-	note	that	the	Service	Token	is	
returned	in	the	access_token field	according	to	OIDC	conventions:

HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

 {
 "token_type": "Bearer",
 "expires_in": 3600,
 "access_token":
 ”eyJhbGciOiJSUzI1NiIsImtpZCI6IjFlOWdkazcifQ.ewogImlzc
 yI6ICJodHRwOi8vc2VydmVyLmV4YW1wbGUuY29tIiwKICJzdWIiOiAiMjQ4Mjg5
 NzYxMDAxIiwKICJhdWQiOiAiczZCaGRSa3F0MyIsCiAibm9uY2UiOiAibi0wUzZ

12 Example from Open ID Connect – the shown Access Token is not OIO JWT token compliant if de-
coded.

 - 25 -

 fV3pBMk1qIiwKICJleHAiOiAxMzExMjgxOTcwLAogImlhdCI6IDEzMTEyODA5Nz
 AKfQ.ggW8hZ1EuVLuxNuuIJKX_V8a_OMXzR0EHR9R6jgdqrOOF4daGU96Sr_P6q
 Jp6IcmD3HP99Obi1PRs-cwh3LO-p146waJ8IhehcwL7F09JdijmBqkvPeB2T9CJ
 NqeGpe-gccMg4vfKjkM8FcGvnzZUN4_KSP0aAp1tOJ1zZwgjxqGByKHiOtX7Tpd
 QyHE5lcMiKPXfEIQILVq0pc_E2DzL7emopWoaoZTF_m0_N0YzFC6g6EJbOEoRoS
 K5hoDalrcvRYLSrQAZZKflyuVCyixEoV9GfNQC3_osjzw2PAithfubEEBLuVVk4
 XUVrWOLrLl0nx7RkKU8NXNHq-rvKMzqg"
 }

Note:	Holder-of-key	tokens	provide	additional	security	against	attacks	where	a	sto-
len	token	is	presented	by	an	illegitimate	client,	since	use	of	a	holder-of-key	token	is	
restricted	to	clients	that	are	in	possession	of	a	specified	(pinned)	private	key	(see	
e.g.	[HOK]).	However,	this	security	measure	is	not	possible	for	all	types	of	clients,	
and	it	comes	with	the	cost	of	additional	complexity	-	so	pros	and	cons	will	have	to	be	
weighed	for	different	use	cases.	In	this	profile,	a	client	will	prove	possession	of	a	pri-
vate	key	by	initiating	a	two-way	TLS	connection	and	the	recipient	of	the	token	can	
subsequently	verify	that	the	certificate	pinned	in	the	token	(specified	the	cnf	claim)	
indeed	matches	the	client	certificate	from	the	TLS	connection	over	which	the	re-
quest	was	sent.	
	
A	sample	cnf	claim	from	a	Holder-of-key	token	is	shown	below:	
	
	 {
 "cnf": {
 "x5t#S256" : "w5cK0ebwmCZUYDB2Y5SlESsXE8o9yZg05O89jdNidgI"
 }
}

 - 26 -

6 Token	renewal	and	session	manage-
ment	

Refresh	Tokens	are	credentials	used	to	obtain	Access	Tokens.		Refresh	tokens	are	is-
sued	to	the	client	by	the	Authorization	Server	and	are	used	to	obtain	a	new	Access	
Token	when	the	current	Access	Token	becomes	invalid	or	expires.	
	
The	profiles	described	in	this	document	rely	on	the	principle	that	issued	Access	and	
Service	Tokens	are	relatively	short-lived	(e.g.	one	hour	or	less)	such	that	have	to	be	
refreshed	often.	This	approach	has	several	benefits:	

• A	short	validity	period	reduces	attack	windows.	
• Continuously	refreshing	Access	Tokens	means	that	their	content	can/will	be	

updated	–	e.g.	if	the	user	has	withdrawn	their	consent	to	an	app	or	if	the	app	
has	been	revoked.	

• Recipients	of	Access	Tokens	(e.g.	API	providers)	are	not	burdened	with	hav-
ing	to	check	for	token	revocation	by	calling	external	services.	

• Token	revocation	functionality	can	be	focused	on	Refresh	Tokens,	which	
have	a	potentially	longer	validity	period.	It	can	be	handled	internally	in	the	
Authorization	and	Token	Servers.	

When	all	Access	Tokens	and	the	associated	Refresh	Tokens	have	expired,	the	client	
has	to	obtain	new	tokens	using	the	Client	Authorization	Profile	described	in	chapter	
4.	User	interaction	can	be	avoided	if	the	Refresh	Token	remains	valid.	
	
Note:	In	an	attempt	to	protect	users	from	excessive	tracking	and	surveillance,	the	
last	couple	of	years	have	witnessed	major	browser	vendors	introducing	increasingly	
restrictive	anti-tracking	measures	including	Chrome’s	SameSite	and	Safari’s	ITP2.	
These	mechanisms	may	impact	identity	and	therefore	must	be	considered	in	real-
world	deployments.		As	a	result,	most	of	the	requirements	in	this	section	are	given	as	
recommendations	(SHOULD)	to	provide	flexibility	to	maneuver	around	these	chal-
lenges.		

6.1 Using	a	Refresh	Token	
A	client	with	a	valid	Refresh	Token	can	use	it	to	obtain	a	new	Access	Token	for	the	
Token	Server,	and	then	use	this	Access	Token	to	obtain	new	Service	Tokens	for	SP	
APIs	using	the	profiles	described	previously.	
	
Refresh	tokens	are	used	with	the	refresh_token	grant	type	as	described	in	section	12	
of	[OIDC];	below	is	shown	an	example:	
	
 POST /token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 client_id=s6BhdRkqt3
 &grant_type=refresh_token
 &refresh_token=8xLOxBtZp8
 &scope=openid%20profile

 - 27 -

	

6.2 Token	revocation	
	
[OIDC-61]	

Authorization	Servers	that	issue	long-lived	(>=8	hours)	Refresh	Tokens	
MUST	provide	a	mechanism	to	revoke	those	tokens	including	a	token	revoca-
tion	endpoint	compliant	with	[RFC7009].	Thus,	tokens	can	be	revoked	by	
making	an	HTTP	POST	request	to	the	token	endpoint	URL	as	specified	in	this	
RFC.	

	
This	profile	does	not	define	the	specific	circumstances	or	policies	where	Refresh	To-
kens	have	to	be	revoked	–	only	the	capability	to	revoke	them	is	required.		Examples	
of	circumstances	that	could	lead	to	revocation	in	specific	implementations	are:	

• A	user	interface	could	be	provided	to	the	end-users	allowing	them	to	revoke	
Refresh	tokens	for	individual	App	instances	or	all	instances	running	on	a	par-
ticular	device	(e.g.	when	the	user	has	lost	his/her	device).	This	might	also	be	
used	by	support	personnel	in	case	the	end-user	has	temporarily	lost	their	
ability	to	authenticate	(e.g.	because	their	credential	is	on	the	same	device).	

• Refresh	Tokens	that	are	not	frequently	used	could	be	set	to	be	revoked	auto-
matically	(e.g.	3	months	of	inactivity).	

• Clients	which	are	native	apps	can	be	programmed	to	request	revocation	
when	certain	criteria	are	met	on	the	end-user	device	–	for	example	if	the	user	
has	changed	biometry	on	their	phone,	if	a	wrong	user-pin	is	entered	a	certain	
number	of	times,	or	an	indication	of	compromise	is	detected.	

• External	events	(e.g.	the	user	revoking	their	user	credential	such	as	NemID	or	
MitID)	could	be	configured	to	automatically	revoke	Refresh	Tokens	enrolled	
and	authorized	with	the	credential	–	provided	that	these	events	can	be	prop-
agated.	Other	events	could	be	that	the	user	identity	is	revoked	(e.g.	an	em-
ployee	identity	no	longer	being	associated	with	a	company),	or	an	API	pro-
vider	revoking	all	access	to	a	client.	

	
Revocation	policies	are	internal	to	the	implementation	of	the	Authorization	Server	
and	do	not	affect	the	wire	protocol;	they	are	therefore	left	to	implementations	to	de-
cide.	
	
	

6.3 Refresh	token	rotation	
	
[OIDC-62]	

For	clients	that	are	Javascript	applications	with	no	backend	(i.e.	SPAs),	the	Au-
thorization	Server	SHOULD	rotate	Refresh	Tokens	on	each	use	and	ensure	

 - 28 -

mechanisms	to	detect	token	replay	(as	described	in	[OSBP]	section	4.12).	Fur-
ther,	the	lifetime	of	the	new	refresh	token	MUST	NOT	extend	the	lifetime	of	the	
initial	refresh	token.	
	
	

6.4 Token	lifetime	

[OIDC-63]	
The	lifetime	of	tokens	SHOULD	NOT	exceed	the	values	in	the	table	below:	

	

	

6.5 Session	management	
Clients	that	are	native	apps	are	not	considered	to	have	a	(web)	session	based	on	the	
initial	end-user	authentication.	For	web	clients,	the	session	management	require-
ments	are	stated	below	based	on	the	client	type.	

6.5.1 Session management for web apps with backend

[OIDC-64]	

Web	clients	with	a	backend	SHOULD	be	able	to	receive	logout	events	from	the	
Authorization	Server	using	OIDC	Front	Channel	Logout	or	OIDC	Back	Channel	
Logout.	
	
When	terminating	a	session,	in	response	to	a	logout	request,	both	session	cook-
ies	and	tokens	MUST	be	discarded	by	the	app	backend.	
	

[OIDC-65]	
The	Authorization	Server	MUST	propagate	logout	events	to/from	any	federated	
authentication	server	(i.e.	SAML	IdP)	used	to	authenticate	the	end-user	in	addi-
tion	to	own	relying	parties	involved	in	current	session.	

Client	type	 Native	app	 Web/JS	app	with	a	
Backend	

JS	app	without	a	Backend	

Refresh	Token		 Long-lived	refresh	
tokens	allowed	(not	
expiring)	if	revocation	
mechanism	
implemented	

8	hours	 1	hour	(with	rotation)	

ID	Token	 1	hour	 1	hour	 1	hour	

Service	Token	 1	hour	 1	hour	 1	hour	

Access	Token	 1	hour	 1	hour	 1	hour	

 - 29 -

6.5.2 Session management for web apps without backend

[OIDC-66]	

Web	clients	with	no	backend	(i.e.	SPAs)	SHOULD	continuously13	poll	the	Author-
ization	server	for	changes	to	the	user	session	via	the	hidden	iframe	mechanism	
defined	in	the	OIDC	Session	Management	Specification.	
	
When	a	session	change	is	detected,	all	tokens	and	HTML5	local	storage	MUST	be	
discarded	by	the	app.		

6.5.3 Client-initiated logout
The	previous	sections	cover	logout	events	occurring	outside	the	client.	Web	clients	
however	also	need	be	able	to	inform	the	Authorization	Server	that	the	end-user	has	
requested	(single)	logout.	
	
[OIDC-67]	
	 Authorization	Servers	MUST	implement	a	Logout	endpoint	according	to	the	
	 OpenID	Connect	RP-initiated	logout	protocol	[LOT]	which	can	be	used	by		
	 clients	to	initiate	logout	by	redirecting	the	user	agent.	
	
	 In	this	profile,	the	id_token_hint	parameter	MUST	be	sent	by	the	client	and	
	 contain	an	Access	Token	or	ID	Token	previously	issued	by	the	Authorization	
	 Server.

[OIDC-68]	
	 As	part	of	logging	out	the	end-user,	the	Authorization	Server	MUST	use	rele-
	 vant	logout	mechanisms	registered	by	(other)	clients	(as	specified	in	sec-
	 tions	6.5.1	and	6.5.2)	to	notify	that	they	are	to	likewise	log	out	the	end-user.	
	

13 Every 10 seconds or less. As mentioned in the introduction, this may be inhibited by some browsers
(SameSite etc.).

 - 30 -

7 API	Access	Profile	
	
This	chapter	describes	how	a	client	can	invoke	an	external	SP	API	using	a	Service	To-
ken	obtained	via	the	mechanisms	described	in	the	Token	Request	profile	in	chapter	
5.	
	
	
[OIDC-71]	

The	client	MUST	pass	the	Service	Token14	in	an	Authorization	HTTP	header	
with	token	type	as	Bearer or Holder-of-Key as	shown	below,	depending	on	
whether	the	token	has	a	cnf	confirmation	claim	with	a	certificate	thumbprint	
or	not.	

	
Example	with	Bearer	token15:	

Example	with	Holder-of-key	token:

[OIDC-72]	

When	presenting	a	Holder-of-key token	the	client	MUST	use	a	(two	way)	TLS	
connection	towards	the	SP	API	using	the	same	client	certificate	that	is	refer-
enced	(via	thumbprint)	in	the	Service	Token's	cnf claim.	

[OIDC-73]	

The	SP	API	MUST	validate	the	received	Service	Token	including	(as	a	mini-
mum)	that	it	is	not	expired,	that	the	signature	is	valid,	that	it	is	signed	by	a	
trusted	Token	Server	using	an	allowed	algorithm,	that	the	SP	API	is	the	in-
tended	audience	of	the	token	(aud field),	and	that	required	privileges	are	in-
cluded	(priv claim).	See	the	[OIO	JWT]	profile	for	details.	

[OIDC-74]	

14 The Service Token is just an Access Token in OAuth sense.
15 Note	that	the	token	in	the	example	above	is	not	a	real	token	and	cannot	be	decoded.	

GET /resource/1 HTTP/1.1
Host: example.com
Authorization: Bearer 7Fjfp0ZBr1H8JgaJs97Jb.8shJgaJs97Jb.asd&DSasdaJs97Jb

GET /resource/1 HTTP/1.1
Host: example.com
Authorization: Holder-of-key
7Fjfp0ZBr1H8JgaJs97Jb.8shJgaJs97Jb.asd&DSasdaJs97Jb

 - 31 -

The	SP	API	MUST	validate	that	NSIS	assurance	level	(for	the	end-user	authen-
tication)	asserted	in	the	Access	Token	(acr field)	is	sufficient	according	to	lo-
cal	access	policy.	The	SP	API	MAY	also	consider	the	authentication	time	of	the	
end-user,	(auth_time		field)	before	access	is	granted.	
	

[OIDC-75]	
If	a	presented	token	contains	the	cnf	claim	indicating	a	Holder-of-key token,	
the	SP	API	MUST	validate	the	Holder-of-key	relation	by	comparing	the	client	
certificate	used	for	TLS	establishment	to	the	SHA-256	thumbprint	included	in	
the	token	in	the	x5t#S256	field16	inside	the	cnf	claim.	The	digest	value	MUST	
match	exactly,	or	the	request	MUST	be	rejected.			
The	SP	API	MUST	reject	requests	where	the	HTTP	Authorization	header	indi-
cates	a	Bearer	token	type	and	the	presented	token	contains	a	cnf	claim,	as	this	
could	indicate	an	attempt	to	downgrade	a	holder-of-key	token	by	an	illegiti-
mate	client.	
	

16 The	x5t#S256 (X.509	certificate	SHA-256	thumbprint)	parameter	is	a	base64url-encoded	SHA-
256	thumbprint	(a.k.a.	digest)	of	the	DER	encoding	of	the	X.509	certificate	[RFC5280]	used	as	client	
certificate.

 - 32 -

8 Security	Requirements	
The	generic	security	requirements	below	apply	to	all	protocol	profiles	in	this	docu-
ment.	This	is	a	minimum	baseline	and	implementors	of	clients	and	APIs	should	con-
sider	additional	implementation-specific	security	requirements	according	to	a	risk	
assessment.	

[OIDC-81]	

All	transport	communication	between	the	client	and	the	authorization	infra-
structure	MUST	use	TLS	1.2	or	higher	and	SHOULD	only	use	cipher	suites	
supporting	perfect	forward	secrecy.	Servers	MUST	reject	negotiation	of	inse-
cure	TLS	connections.	The	document	[NIST	800-52]	(section	“Minimum	Re-
quirements	for	TLS	Servers”)	or	subsequent	revision	may	serve	as	reference	
for	an	acceptable	level	of	transport	security.	

[OIDC-82]	

Native	app	clients	MUST	pin	server	TLS	certificates	(i.e.	maintain	a	list	of	
trusted	TLS	server	certificates	as	part	of	their	configuration).	

[OIDC-83]	

JWT	Access	Tokens	and	Service	Tokens	MUST	follow	the	OIO	JWT	Profile	
[OIO	JWT].	

	[OIDC-84]	

Implementations	MUST	follow	requirements	in	[RFC8252].	

[OIDC-85]	

Clients	being	native	apps	or	Javascript	applications	without	a	backend	MUST	
be	treated	as	public	native	clients	and	MUST	NOT	have	any	secrets	embedded	
in	their	script	or	installation	package17.	

	

17 Using a dummy-secret because it is required by a client library is still allowed - as long as the dummy-
secret is not used for security purposes (i.e. authentication).

 - 33 -

9 References	

• [JWA]	 Jones,	M.,	“JSON	Web	Algorithms	(JWA),	IETF	Proposed	Standard",	

RFC7518,	May	2015.	https://datatracker.ietf.org/doc/html/rfc7518	

• [JWE]	 Jones,	M.,	and	J.	Hildebrand,	“JSON	Web	Encryption	(JWE),	IETF	Pro-
posed	Standard”	https://tools.ietf.org/html/rfc7516	

• [JWK]	 Jones,	M.,	“JSON	Web	Key	(JWK),”	IETF	Proposed	Standard,	
https://tools.ietf.org/html/rfc7517	

• [JWS]	 Jones,	M.,	Bradley,	J.,	and	N.	Sakimura,	“JSON	Web	Signature	(JWS),”	
IETF	Proposed	Standard, https://tools.ietf.org/html/rfc7515	

• [JWT]	 Jones,	M.,	Bradley,	J.,	and	N.	Sakimura,	“JSON	Web	Token	(JWT),”	IETF	
Proposed	Standard,	https://tools.ietf.org/html/rfc7519.		

• [OIO	JWT]	“OIO	JWT	Token	Profile”,	Danish	Agency	for	Digitisation.	
https://digst.dk/it-loesninger/nemlog-in/det-kommende-nemlog-
in/vejledninger-og-standarder/openid-connect-profiler/	

• [HOK]		Campbell,	Bradley,	Sakimura:	"OAuth	2.0	Mutual-TLS	Client	Authentica-
tion	and	Certificate-Bound	Access	Tokens",	https://data-
tracker.ietf.org/doc/html/rfc8705.	

• [LOT]	Jones,	Medeiros,	Agarwal,	Sakimura,	Bradley:	"OpenID	Connect	RP-
Initiated	Logout	1.0	-	draft	01",	https://openid.net/specs/openid-connect-rpin-
itiated-1_0.html.	

• [BBA]	Parecki,	Waite:	“OAuth	2.0	for	Browser-Based	Apps”,	IETF	draft.	

• [NSIS]		”National	Standard	for	Identiteters	Sikringsniveauer	2.0.1”.	
https://digst.dk/it-loesninger/nemlog-in/det-kommende-nemlog-
in/vejledninger-og-standarder/nsis-standarden/	

• [OIOSAML] 	”OIOSAML	Web	SSO	Profile	3.0.2”.	https://digst.dk/it-
loesninger/nemlog-in/det-kommende-nemlog-in/vejledninger-og-
standarder/oiosaml-302/	

• [OIO-BPP]	”OIO	Basic	Privilege	Profile	1.2”.	
https://digst.dk/media/20999/oiosaml-basic-privilege-profile-1_2.pdf	
	

• [RFC6819]	“OAuth	2.0	Threat	Model	and	Security	Considerations”,	IETF.	
https://tools.ietf.org/html/rfc6819	

• [RFC8252]	“OAuth	2.0	for	Native	apps”,	IETF.	

• [RFC6750]	“The	OAuth	2.0	Authorization	Framework:	Bearer	Token	Usage”,	
IETF,	https://tools.ietf.org/html/rfc6750	

• [RFC7009]	”OAuth	2.0	Token	Revocation”,	IETF.	

• [OIDC]	“OpenID	Connect	Core	1.0	incorporating	errata	set	1,	November	2014”,	
OpenID.Net.	

 - 34 -

• [OAuth]	“The	OAuth	2.0	Authorization	Framework”,	RFC6749,	IETF,	October	
2012.	

• [NSIS]	“National	Standard	for	Identiteters	Sikringsniveauer	2.0.1”,	
Digitaliseringsstyrelsen.	https://digst.dk/it-loesninger/nemlog-in/det-kommende-
nemlog-in/vejledninger-og-standarder/nsis-standarden/	

• [OSBP] ”OAuth 2.0 Security Best Current Practice”, IEFT. https://data-
tracker.ietf.org/doc/draft-ietf-oauth-security-topics/

