
Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 1

 1

 2

 3

Liberty Basic SOAP Binding 4

Version: 1.0 5

Editors: 6

Søren Peter Nielsen, Danish National IT and Telecom Agency 7

Thomas Gundel, IT Crew 8

Contributors: 9

Conor P. Cahill, Intel 10

George Fletcher, AOL 11

Paul Madsen, NTT 12

Sampo Kellomaki, Symlabs 13

Pat Patterson, Sun Microsystems 14

Colin Wallis, New Zealand Government State Services Commission 15

Abstract: 16

This document contains a basic profile of the Liberty ID-WSF SOAP binding 2.0. 17

Filename: Liberty-Basic-SOAP-Binding-1.0_Final.pdf18

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 2

This profile has been developed from business requirements within eGovernment, but is 19

believed to be generally applicable. Liberty Alliance is making this profile publicly 20

available to the industry at large for review and consideration. 21

Notice 22

This document has been prepared by Sponsors of the Liberty Alliance. Permission is hereby 23

granted to use the document solely for the purpose of implementing the Specification. No 24

rights are granted to prepare derivative works of this Specification. Entities seeking 25

permission to reproduce portions of this document for other uses must contact the Liberty 26

Alliance to determine whether an appropriate license for such use is available. 27

Implementation or use of certain elements of this document may require licenses under third 28

party intellectual property rights, including without limitation, patent rights. The Sponsors of 29

and any other contributors to the Specification are not and shall not be held responsible in 30

any manner for identifying or failing to identify any or all such third party intellectual 31

property rights. This Specification is provided "AS IS," and no participant in the Liberty 32

Alliance makes any warranty of any kind, express or implied, including any implied 33

warranties of merchantability, non-infringement of third party intellectual property rights, 34

and fitness for a particular purpose. Implementers of this Specification are advised to review 35

the Liberty Alliance Project's website (http://www.projectliberty.org/) for information 36

concerning any Necessary Claims Disclosure Notices that have been received by the Liberty 37

Alliance Management Board. 38

Copyright © 2009 ActivIdentity, Trent Adams, Adetti, Adobe Systems, AOL, BEA 39

Systems, Berne, University of Applied Sciences, Gerald Beuchelt, BIPAC, John Bradley, 40

British Telecommunications plc, Hellmuth Broda, Bronnoysund Register Centre, BUPA, 41

CA, Canada Post Corporation, Center for Democracy and Technology, Chief, Information 42

Office Austria, China Internet Network Information Center (CNNIC), ChoicePoint, Citi, 43

City University, Clareity Security, Dan Combs, Computer & Communications Industry 44

Association, Courion Corporation, Danish Biometrics Research Proj. Consortium, Danish 45

National IT and Telecom Agency, Deny All, Deutsche Telekom AG, DGME, Diversinet 46

Corp., Drummond Group Inc., East of England Telematics Development Trust Ltd, EIfEL, 47

Electronics and Telecommunications Research Institute (ETRI), Engineering Partnership in 48

Lancashire, Enterprise Java Victoria Inc., Entr'ouvert, Ericsson, eValid8, Evidian, Fidelity 49

Investments, Financial Servcies Technology Consortium (FSTC), Finland National Board of 50

Taxes, Fischer International, France Telecom, Fraunhofer-Gesellschaft, Fraunhofer Institute 51

for Integrated Circuits IIS, Fraunhofer Institute for Secure Information Technology (SIT), 52

Fraunhofer Institut for Experimentelles Software Engineering, Fugen Solutions, Fujitsu 53

Services Oy, Fun Communications GmbH, Gemalto, Giesecke & Devrient GMBH, Global 54

Platform, GSA Office of Governmentwide Policy, Healthcare Financial Management 55

Association (HFMA), Health Information and Management Systems Society (HIMSS), 56

Helsinki Institute of Physics, Jeff Hodges, Hongkong Post, Guy Huntington, Imprivata, 57

Information Card Foundation, Institute of Bioorganic Chemistry Poland, Institute of 58

http://www.projectliberty.org/

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 3

Information Management of the University, Institut Experimentelles Software Engineering 59

(IESE), Intel Corporation, International Institute of Telecommunications, International 60

Security, Trust and Privacy Alliance, Internet2, Interoperability Clearinghouse (ICH), 61

ISOC, Java Wireless Competency Centre (JWCC), Kantega AS, Kuppinger Cole & Partner, 62

Kuratorium OFFIS e.V., Colin Mallett, Rob Marano, McMaster University, 63

MEDNETWorld.com, Methics Oy, Mortgage Bankers Association (MBA), Mydex, 64

National Institute for Urban Search & Rescue Inc NEC Corporation, Network Applications 65

Consortium (NAC), Neustar, Newspaper Association of America, New Zealand 66

Government State Services Commission, NHK (Japan Broadcasting Corporation) Science & 67

Technical Research Laboratories, Nippon Telegraph and Telephone Company, Nokia 68

Corporation, Nortel, NorthID Oy, Norwegian Agency for Public Management and 69

eGovernment, Norwegian Public Roads Administration, Novell, NRI Pacific, Office of the 70

Information Privacy Commissioner of Ontario, Omnibranch, OpenIAM, Oracle USA, Inc., 71

Organisation Internationale pour la Sécurité des Transactions Électroniques (OISTE), Oslo 72

University, Our New Evolution, PAM Forum, Parity Communications, Inc., PayPal, Phase2 73

Technology, Ping Identity Corporation, Bob Pinheiro, Platinum Solutions, Postsecondary 74

Electronic Standards Council (PESC), Purdue University, RSA Security, Mary Ruddy, 75

SAFE Bio-pharma, SanDisk Corporation, Shidler Center for Law, Andrew Shikiar, Signicat 76

AS, Singapore Institute of Manufacturing Technology, Software & Information Industry 77

Association, Software Innovation ASA, Sprint Nextel Corporation, Studio Notarile 78

Genghini-SNG, Sunderland City Council, SUNET, Sun Microsystems, SwissSign AG, 79

Technische Universitat Berlin, Telefonica S.A., TeleTrusT, TeliaSonera Mobile Networks 80

AB, TERENA, Thales e-Security, The Boeing Company, The Financial Services 81

Roundtable/BITS, The Open Group, The University of Chicago as Operator of Argonne 82

National Laboratory, TRUSTe, tScheme Limited, UNINETT AS, Universidad Politecnica 83

de Madrid, University of Birmingham, University of Kent, University of North Carolina at 84

Charlotte, University of Ottawa (TTBE), U.S. Department of Defense, VeriSign, Vodafone 85

Group Plc, Web Services Competence Center (WSCC), Zenn New Media 86

 87

All rights reserved. 88

 Liberty Alliance Project 89

 Licensing Administrator 90

 c/o IEEE-ISTO 91

 445 Hoes Lane 92

 Piscataway, NJ 08855-1331, USA 93

 info@projectliberty.org 94

95

mailto:info@projectliberty.org

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 4

Table of Contents 96

1 Introduction .. 5 97
1.1 Context .. 5 98

1.2 Assumptions .. 6 99

1.3 Excluded Features ... 6 100

2 SOAP Binding ... 7 101
2.1 SOAP Version ... 7 102

2.2 The SOAPAction HTTP Header .. 7 103

2.3 SOAP Fault Messages .. 7 104

3 Messaging-specific Header Blocks ... 8 105
3.1 Overview of Header Blocks .. 8 106

3.2 The <wsa:MessageID> Header Block .. 8 107

3.2.1 <wsa:MessageID> Value Requirements ... 8 108

3.3 The <wsa:RelatesTo> Header Block .. 9 109

3.4 The <wsa:Action> Header Block .. 9 110

3.5 The <sbf:Framework> Header Block .. 9 111

3.6 The <wsa:To> Header Block ..10 112

3.7 The <wsse:Security> Header Block ..10 113

3.7.1 Message Authentication and Integrity ..11 114

3.7.2 Establishing trust in message signature key ...11 115

3.7.3 Authentication Assertions ...12 116

3.7.4 Additional Processing Rules for holder-of-key Assertions13 117

4 Overall Processing Rules...14 118
4.1 Constructing and sending a SOAP message ...14 119

4.2 Receiving and processing a SOAP message ...19 120

5 Security Considerations...22 121

6 References ...23 122

 123

125

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 5

1 Introduction 126

Identity-based web services are expected to play an important role in enabling services that 127

spans organisational borders since they allow IT systems to be connected in a secure, 128

privacy-respecting and interoperable manner. 129

 130

The present profile is intended to be a basic, scaled-down version of the Liberty ID-WSF 2.0 131

SOAP Binding Specification [LIB-SOAP] and Security Mechanisms 2.0 ([LIB-SEC] and 132

[LIB-SAMLP]). The basic profile adopts mandatory elements from these specifications such 133

that a Web Service Consumer implementing the profile should be able to invoke a Web 134

Service Provider implementing the full Liberty SOAP binding (but not vice versa). 135

 136

In order to keep the profile basic, self-contained
1
 and easy to implement without knowledge 137

on the other Liberty specifications, the profile is not a sub-profile of the other Liberty 138

specifications. Instead, this document profiles the WS-Addressing SOAP Binding 139

[WSAv1.0-SOAP] and WS-Security [WSS] directly. Thus, mandatory elements and 140

processing rules from the Liberty SOAP binding are duplicated here and the profile can thus 141

be read and implemented independently. Other, non-Liberty specifications including SOAP, 142

WS-Security and WS-Addressing are referenced and not embedded here in order to keep the 143

profile light-weight. It is believed that many application developers will not have to 144

implement these specifications from scratch because they are supported in their development 145

tools, messaging middleware and application servers. 146

1.1 Context 147

The following is an example of a usage scenario supported by the profile and which was 148

used to gather requirements: 149

1. A browser user logs in at a Service Provider using normal SAML web SSO 150

profiles. 151

2. The Service Provider needs to invoke a remote identity-based web service at a 152

Web Service Provider (WSP) on the user’s behalf. 153

3. The Service Provider exchanges the user’s SAML SSO assertion (or embedded 154

bootstrap token) for an authentication assertion (also called an identity token
2
) 155

targeted at the WSP, e.g. by contacting a Security Token Service (STS) or 156

Discovery Service. 157

4. The Service Provider (aka Web Service Consumer) invokes the Web Service 158

Provider using the SOAP binding described in this profile. The request includes 159

the authentication assertion in security headers and is signed by the sender. 160

5. The Web Service Provider processes the request and responds synchronously. 161

1
 The profile still relies on the WS-* specifications such as WS-Addressing and WS-Security.

2
 To be exact this profile uses the Liberty term “Authentication assertion” instead of “Identity token” as this

term is not defined in a Liberty context..

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 6

 162

1.2 Assumptions 163

The profile builds on the following assumptions: 164

 A Web Service Consumer (WSC) needs to invoke a Web Service Provider (WSP) on 165

behalf of a user / principal by sending a message and receiving synchronously a 166

response conforming to this profile. 167

 The WSC has already access to the WSP’s meta data needed for the invocation (end 168

points, service interface etc.). 169

 Both WSC and WSP possess a means of creating signatures that can be verified by 170

each other; thus they can establish mutual trust in each other’s signing key. 171

 The WSC has obtained an authentication assertion in the form of an SAML 2.0 172

assertion which describes the identity of the user whose identity-based web service is 173

being invoked (invoking identity). The authentication assertion can be obtained by 174

several means including a Liberty Discovery Service or a STS implementing the 175

WS-Trust specification. 176

 The WSP is able to validate the authentication assertion. 177

 178

These assumptions (along with the excluded features listed below) are the basis for the 179

formulation of a simplified profile. 180

 181

1.3 Excluded Features 182

The following features from [LIB-SOAP] have been excluded in order to formulate a 183

simpler profile: 184

 Endpoint update 185

 Processing context header 186

 Asynchronous messages 187

 Security tokens other than SAML 2.0 assertions 188

 Message authentication and -integrity established by other means that signing the 189

request 190

 User interaction 191

 Usage directives 192

 One user invoking a service on behalf of another user 193

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 7

2 SOAP Binding 194

2.1 SOAP Version 195

This profile depends upon SOAP version 1.1 as specified in [SOAPv1.1]. Messages 196

conformant to this specification MUST also be conformant to [SOAPv1.1]. 197

2.2 The SOAPAction HTTP Header 198

[SOAPv1.1] defines the SOAPAction HTTP header, and requires its usage on HTTP-bound 199

messages. 200

 201

The value of the SOAPAction HTTP header SHOULD be the same as the value of the 202

<wsa:Action> header block defined in the next chapter. 203

 204

2.3 SOAP Fault Messages 205

When reporting a SOAP processing error such as "S:VersionMismatch" or 206

"S:MustUnderstand", the <S:Fault> element SHOULD be constructed according to 207

[SOAPv1.1]. 208

 209

When reporting a WS-Addressing processing error such as "wsa:InvalidAddress", the 210

<S:Fault> element SHOULD be constructed according to [WSAv1.0-SOAP]. 211

 212

For all other processing errors the <S:Fault> element’s attributes and child elements 213

MUST be constructed according to these rules: 214

1. The <S:Fault> element: 215

a. SHOULD contain a <faultcode> element whose value SHOULD be one of 216

"sbf:FrameworkVersionMismatch", "S:server" or "S:client". 217

b. SHOULD contain a <faultstring> element. This string value MAY be 218

localized. 219

c. SHOULD NOT contain a <S:faultactor> element. 220

2. The <S:Fault> element’s <detail> child element SHOULD contain a <Status> 221

element which: 222

a. MUST contain a code attribute. 223

b. MAY contain a ref attribute. 224

c. MAY contain a comment attribute. This string value MAY be localized. 225

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 8

3 Messaging-specific Header Blocks 226

This section profiles the use of WS-Addressing SOAP Binding [WSAv1.0-SOAP] and WS-227

Security [WSS] header blocks, and incorporates the framework header from the Liberty 228

SOAP Binding [LIB-SOAP]. 229

 230

Along with header block descriptions are included processing rules the sender must apply 231

when including it in an outgoing message or when processing it is part of an incoming 232

message. 233

 234

When sending a response to a request, the same header blocks and processing rules apply 235

unless stated otherwise below. The main difference is that response messages do not include 236

authentication assertions representing a user. 237

3.1 Overview of Header Blocks 238

The following header blocks MUST be included in the SOAP header: 239
 <wsa:MessageID> 240

 <wsa:RelatesTo> (mandatory on response) 241
 <wsa:Action> 242
 <wsse:Security> 243
 <sbf:Framework> 244

 245

The following headers MAY be included in the SOAP header: 246
<wsa:To> 247

 248

If included, the recipient SHOULD be able to process them according to the requirements 249

described below. 250

 251

 252

3.2 The <wsa:MessageID> Header Block 253

The <wsa:MessageID> header block is defined in [WSAv1.0-SOAP]. The value of this 254

header block uniquely identifies the message that contains it. 255

 256

Every message MUST contain exactly one such header block. 257
 258

3.2.1 <wsa:MessageID> Value Requirements 259

Values of the <wsa:MessageID> header block MUST satisfy the following property: 260

 261

Any party that assigns a value to a <wsa:MessageID> header block MUST ensure that 262

there is negligible probability that the party or any other party will accidentally assign the 263

same identifier to any other message. 264

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 9

 265

The mechanism by which senders or receivers ensure that an identifier is unique is left to 266

implementations. In the case that a pseudorandom technique is employed, the above 267

requirement MAY be met by randomly choosing a value 160 bits in length. 268

 269

Note that [WSAv1.0] requires that <wsa:MessageID> values be absolute IRIs. 270

3.3 The <wsa:RelatesTo> Header Block 271

The <wsa:RelatesTo> header block is defined in [WSAv1.0-SOAP]. 272

 273

The header block MUST be included exactly once in responses to prior-received request 274

messages. If the RelationshipType attribute is included it MUST be set to the value 275

http://www.w3.org/2005/03/addressing/reply. 276

 277

In response messages, the value of this header block MUST be set to the value of the 278

<wsa:MessageID> header block of the prior-received message. 279

 280

3.4 The <wsa:Action> Header Block 281

The <wsa:Action> header block is defined in [WSAv1.0-SOAP]. The value of this header 282

block uniquely identifies the semantics implied by the message. 283

 284

The header block MUST be included exactly once in all messages. 285

 286

Note 287
The value of this header block SHOULD contain the same value as the SOAPAction HTTP 288

header defined in [SOAPv1.1]. The SOAP specification requires the HTTP header on all 289

HTTP-bound SOAP messages. 290

 291

 292

3.5 The <sbf:Framework> Header Block 293

The <sbf:Framework> header block is defined in the [LIB-SOAP] specification and 294

provides the sender with a means to communicate the version of the ID-WSF framework 295

used to construct the message. In order to make messages produced using this profile 296

compatible with the full Liberty SOAP binding, the Liberty framework header is used in this 297

profile as well. 298

 299

The header block MUST be included exactly once in every message. 300

 301

Further: 302

The version attribute SHOULD be set to “2.0” 303

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 10

 304

A profile attribute with the name space “urn:liberty:sb:profile” MUST be 305

included with the value of “urn:liberty:sb:profile:basic”. 306

 307

 308

Example: 309
 310
<sbf:Framework 311
 xmlns:sbfprofile=”urn:liberty:sb:profile” 312
 … 313
 version="2.0" 314
 sbfprofile:profile="urn:liberty:sb:profile:basic" 315
 s:mustUnderstand="1" 316
 s:actor="http://schemas.../next" 317
 wsu:Id="SBF"/> 318
 319
If the receiver of a message does not recognize the version and profile attributes, it 320

MAY respond to the sender with a SOAP fault message with the <faultcode> of 321

sbf:FrameworkVersionMismatch. 322

 323

3.6 The <wsa:To> Header Block 324

The <wsa:To> header block is defined in [WSAv1.0-SOAP]. The value of this header block 325

specifies the intended destination of the message. 326

 327

Note 328
In the typical case that a WS-Addressing endpoint reference is used to address a message, the 329

value of this header block is taken from the <wsa:Address> of the endpoint reference. If the 330

<wsa:To> header block is not present, the value defaults to 331

http://www.w3.org/2005/03/addressing/role/anonymous; so, when constructing a 332

message, the header block can be omitted if this is the value that would be used. This 333

typically allows the <wsa:To> header block to be omitted in responses during synchronous 334

request-response message exchanges over HTTP. 335

 336

The header block is optional. 337

3.7 The <wsse:Security> Header Block 338

This section defines elements and processing rules for SOAP message security by profiling 339

the <wsse:Security> header block defined in [WSS]. Processing rules defined in [WSS] 340

and [WSS-STP] MUST be followed unless stated explicitly otherwise below. 341

 342

A single <wsse:Security> header block MUST be present and MUST have a 343

mustUnderstand attribute with the logical value of true. Further, it MUST include a 344

<wsu:Timestamp> with a <wsu:Created> element. 345

 346

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 11

The value of the <wsu:Created> element SHOULD be within an appropriate offset from 347

local time. Absent other guidance, a value of 5 minutes MAY be used. 348

 349

If the <wsu:Timestamp> element includes an <wsu:Expires> element, the receiver MUST 350

ensure that his local time is before that time. 351

 352

To prevent message replay, receivers SHOULD maintain a message cache, and check 353

received messageID values against the cache. How long time a message should be kept in 354

the cache at the WSP is governed by deployment policy. 355
 356
 357
 358

3.7.1 Message Authentication and Integrity 359

Authentication and integrity of messages is established by means of digital signatures 360

applied to the SOAP message. Confidentiality, if required, MUST be established by using a 361

secure transport protocol (e.g. using SSL 3.0 or TLS 1.1 or later). 362

 363
The sender MUST create and include a single <ds:Signature> element in the 364

<wsse:Security> header block and this signature MUST reference: 365

 The SOAP <Body> element 366

 All security tokens embedded directly under the <wsse:Security> element via a 367

<wsse:SecurityTokenReference> (see below), and 368

 All SOAP header blocks in the message defined in this profile. The signature MAY 369

reference other elements including header blocks not mentioned in this profile. 370

 371

 372

If the sender has obtained a SAML holder-of-key Assertion vouching for the signing key (see 373

next section) it SHOULD be included in the security header. Detailed requirements for using 374

holder-of-key assertions are given below. 375

 376

If the sender does not possess a holder-of-key Assertion but instead has an X.509 certificate, 377

the certificate SHOULD be included in a <wsse:BinarySecurityToken> element in the 378

security header. In the message signature, the <ds:KeyInfo> element SHOULD refer to 379

this token via a <wsse:SecurityTokenReference>. 380

 381

The receiver MUST validate the message signature and security tokens including test of 382

validity period and trust in the token issuer. Depending on local policy, the receiver 383

SHOULD check revocation status of any certificates used to sign the message and tokens. 384

 385

3.7.2 Establishing trust in message signature key 386

The receiver can establish trust in the sender’s signature key in the following ways: 387

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 12

 The security header contains a SAML 2.0 holder-of-key assertion issued by 388

someone
3
 the receiver trusts, and the holder-of-key assertion includes a key that can 389

be used to verify the message signature. Note that the assertion itself will be signed 390

by the trusted issuer so the receiver has to be able to verify the issuer’s signature. The 391

sender’s signing key MAY be symmetric or asymmetric. 392

 The message is signed with a key the receiver already knows / trusts for example due 393

to prior metadata exchange. 394

 The security header includes an X.509 certificate in a BinarySecurityToken issued 395

by a Certificate Authority the receiver trusts, and the certificate can be used to verify 396

the message signature. 397

 398

3.7.3 Authentication Assertions 399

In request messages, the <wsse:Security> header block MAY include authentication 400

assertions in the form of SAML 2.0 assertions representing the identity of the user / principal 401

whose identity-based web service is being invoked. Other types of security tokens (except for 402

BinarySecurityTokens containing certificates) SHOULD not be used and implementations 403

of this profile are not required to implement them. 404

 405

The authentication assertion MUST be a SAML 2.0 assertion with subject confirmation 406

method being either urn:oasis:names:tc:SAML:2.0:cm:bearer or 407

urn:oasis:names:tc:SAML:2.0:cm:holder-of-key. 408

 409

Authentication assertions MUST be signed by the issuer (e.g. Identity Provider, STS or 410

Discovery Service). Requirements for the content of authentication assertions are not 411

specified further in this profile. 412

 413

Authentication assertions MUST be signed by the sender by including first a 414

<wsse:SecurityTokenReference> in <wsse:Security> header block, and then 415

referencing the STR from the message signature using a <ds:Reference> element. The 416

security token reference MUST include a <wsse:KeyIdentifier> with a ValueType of 417
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLID 418

and specify the ID of the SAML assertion. The <ds:Reference> element MUST use a 419

transform algorithm set to “http://docs.oasis-open.org/wss/2004/01/oasis-420

200401-wsssoap-message-security-1.0#STR-Transform”. 421

 422

The receiver MUST validate SAML 2.0 authentication assertions according to the 423

processing rules defined in [SAML-CORE] and [WSS-STP] including life time of the token, 424

audience restriction, the issuer’s signature over the token, trust in the issuer and other 425

processing rules defined by token profiles. 426
 427

3
 For example a Liberty Discovery Service or a Security Token Service.

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 13

3.7.4 Additional Processing Rules for holder-of-key Assertions 428

When the authentication assertion has a subject confirmation method being “holder-of-429

key” it means that the sender must prove possession of a key mentioned in the assertion’s 430

<SubjectConfirmationData> in order for the recipient to rely on the assertion. The proof-431

of-possession of the key will be achieved via the message signature and provides additional 432

assurance that the sender is allowed to use to the assertion in a web service invocation. 433

 434

In this profile, a holder-of-key Assertion MUST in the <SubjectConfirmationData> 435

element include a key that can be used to verify the message signature. Thus, the same key 436

used for message authentication and integrity is used to confirm the right to use the assertion 437

for message authorization purposes. 438

 439

The message signature (i.e. the <ds:Signature> element) MUST refer to the token with 440

the subject confirmation key within the <ds:KeyInfo> element. 441

 442

The receiver MUST check that the message is signed by same key mentioned in the 443

assertion’s subject confirmation element before relying on the assertion content. 444

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 14

4 Overall Processing Rules 445

Overall processing of SOAP-bound messages follows the rules of the SOAP processing 446

model described in [SOAPv1.1]. A number of additional rules are defined below. Notice that 447

processing rules for individual elements are found in the previous section. 448

 449

4.1 Constructing and sending a SOAP message 450

 The sender MUST follow these processing rules when constructing and sending an outgoing 451

SOAP message: 452

 453

1. The outgoing message MUST satisfy the rules for SOAP binding defined in section 454

“SOAP Binding”. 455

2. The outgoing message MUST satisfy the rules for WS-Addressing SOAP binding 456

given in [WSAv1.0-SOAP]. 457

3. The outgoing message MUST include the mandatory header blocks defined above. 458

4. All other Liberty headers defined in [LIB-SOAP] SHOULD NOT be used with this 459

profile since implementations of the profile are not required to support them. 460

5. Each header block included in the outgoing message MUST conform to the 461

processing rules defined for each header block. 462

 463

Below is shown a procedure that illustrates how a conforming message can be constructed 464

(some low-level details have been omitted). It is assumed that the sender has obtained all the 465

information required to construct the message including security tokens, signing keys and 466

message payload. The procedure is not normative and conforming messages can be 467

constructed in other ways: 468

 469

1. Construct the XML payload to be included in the SOAP Body. 470

2. Construct a SOAP envelope with <Header> and <Body>, and embed the payload in 471

the <Body>. Add a wsu:Id attribute
4
 to the <Body> element. 472

3. Add a <wsa:MessageID> header block (including a wsu:Id attribute) which 473

uniquely identifies the message; for example generate a 160-bit pseudorandom 474

number and embed it in a URI as follows: 475

 476
http://spwsp.com/ffeeddccbbaa99887766 554433221100ffeebbcc 477

 478

4. When generating a response, include a <wsa:RelatesTo> element (including a 479

wsu:Id attribute) containing the message ID of the request. 480

5. Add a <wsa:Action> header block (including a wsu:Id attribute) corresponding to 481

the SOAPAction HTTP header as required by the service being invoked. 482

4
 In the following, all wsu:Id attributes should contain a value that is unique within the SOAP message.

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 15

6. If required, add a <wsa:To> header block (including a wsu:Id attribute) to identify 483

the recipient. 484

7. Add the <sbf:Framework> header block as defined previously (including a wsu:Id 485

attribute). 486

8. Add a <wsse:Security> header block with a mustUnderstand=1 attribute. 487

a. Add a <wsu:Timestamp> element (including a wsu:Id attribute) with a 488

<wsu:Created> sub-element that includes the local time. 489

b. Include any security tokens (SAML Assertions and/or BinarySecurityTokens 490

containing X.509 certificates) in the security header block. Ensure that they 491

have unique id attributes so they can be referenced (e.g. saml2:ID or 492

wsu:Id). 493

c. Create a <wsse:SecurityTokenReference> element (including a wsu:Id 494

attribute) for each embedded SAML assertion. Add a TokenType attribute 495

stating the type of token (http://docs.oasis-open.org/wss/oasis-496

wss-saml-token-profile-1.1#SAMLV2.0) and a 497

<wsse:KeyIdentifier> sub-element containing the ID of the assertion. 498

d. Create a <ds:Signature> element in the security header: 499

i. Add a <ds:SignedInfo> element and embed <ds:Reference> 500

sub-elements with references to each of the above header blocks and 501

the SOAP Body. For each reference, include element ID, digest 502

method and digest value. Set the Transform Algorithm to 503
http://www.w3.org/2001/10/xml-exc-c14n# 504

ii. Include a <ds:Reference> elements for each assertion reference 505

produced in step c) by using the ID of the 506

<SecurityTokenReference> element. Set the Transform 507

Algorithm set to http://docs.oasis-508
open.org/wss/2004/01/oasis-200401-wsssoap-message-509
security-1.0#STR-Transform 510

e. Add a <ds:KeyInfo> element with a <wsse:SecurityTokenReference> 511

pointing to either a SAML assertion or BinarySecurityToken vouching for 512

the signature key. The reference should include a <wsse:KeyIdentifier> 513

containing the ID of the token. 514

f. Compute the <ds:SignatureValue> over the <ds:SignedInfo> using 515

the signature key. 516

9. Send the message over a secure transport (SSL or TLS). 517

 518

 519

Below is shown an example SOAP message that is compliant with the Liberty Basic SOAP 520

binding: 521
522

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 16

<?xml version="1.0" encoding="UTF-8"?> 523
<s:Envelope 524
 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" 525
 xmlns:sbf="urn:liberty:sb" 526
 xmlns:sbfprofile="urn:liberty:sb:profile" 527
 xmlns:sec="urn:liberty:security:2006-08" 528
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext- 529
 1.0.xsd" 530
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility- 531
 1.0.xsd" 532
 xmlns:wsa="http://www.w3.org/2005/08/addressing" 533
 xmlns:idpp="urn:liberty:id-sis-pp:2003-08"> 534
 535
 <s:Header> 536
 <wsa:MessageID wsu:Id="mid">f63d289c-cd9a-4c00-bf87-c4bad0310646</wsa:MessageID> 537
 538
 <wsa:To wsu:Id="to">...</wsa:To> 539
 540
 <wsa:Action wsu:Id="action">urn:liberty:id-sis-pp:2003-08:Modify</wsa:Action> 541
 542
 543
 <sbf:Framework 544
 version="2.0" 545
 sbfprofile:profile="urn:liberty:sb:profile:basic" 546
 s:mustUnderstand="1" 547
 s:actor="http://schemas.../next" 548
 wsu:Id="framework"/> 549
 550
 551
 <wsse:Security mustUnderstand="1"> 552
 <wsu:Timestamp wsu:Id="ts"> 553
 <wsu:Created>2008-08-17T04:49:17Z</wsu:Created > 554
 </wsu:Timestamp> 555
 556
 <!-- this is the holder-of-key token with the sender's certificate --> 557
 <saml2:Assertion 558
 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion" 559
 Version="2.0" 560
 ID="sxJu9g/vvLG9sAN9bKp/8q0NKU=" 561
 IssueInstant="2008-08-01T16:58:33Z"> 562
 <saml2:Issuer>http://authority.example.com/</Saml2:Issuer> 563
 564
 <!-- signature by the issuer over the assertion --> 565
 <ds:Signature> 566
 <ds:SignedInfo> 567
 <ds:CanonicalizationMethod 568
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 569
 <ds:SignatureMethod 570
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> 571
 <ds:Reference URI="#sxJu9g/vvLG9sAN9bKp/8q0NKU="> 572
 <ds:Transforms> 573
 <ds:Transform 574
 Algorithm="http://www.w3.org/2000/09/xmldsig#envelopedsignature"/> 575
 </ds:Transforms> 576

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 17

 <ds:DigestMethod 577
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 578
 579
 <ds:DigestValue>TCDVSuG6grhyHbzhQFWFzGrxIPE=</ds:DigestValue> 580
 </ds:Reference> 581
 </ds:SignedInfo> 582
 <ds:SignatureValue> 583
 x/GyPbzmFEe85pGD3c1aXG4Vspb9V9jGCjwcRCKrtwPS6vdVNCcY5rHaFPYWkf+5 584
 EIYcPzx+pX1h43SmwviCqXRjRtMANWbHLhWAptaK1ywS7gFgsD01qjyen3CP+m3D 585
 w6vKhaqledl0BYyrIzb4KkHO4ahNyBVXbJwqv5pUaE4= 586
 </ds:SignatureValue> 587
 <ds:KeyInfo> 588
 <ds:X509Data> 589
 <!-- data identifying the signer's certificate --> 590
 </ds:X509Data> 591
 </ds:KeyInfo> 592
 </ds:Signature> 593
 594
 595
 <saml2:Subject> 596
 <saml:NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent"> 597
 005a06e0-ad82-110d-a556-004005b13a2b 598
 </saml:NameID> 599
 600
 <!-- Here comes the subject confirmation method saying this is a holder-of-601
key --> 602
 <saml2:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:holder-of-603
key"> 604
 605
 <!-- Here comes a NameID indicating the ID of the sender who must confirm 606
with a key --> 607
 <saml2:NameID format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity"> 608
 http://wsc.someorg.com 609
 </saml2:NameID> 610
 611
 <!-- Here comes info on the key to confirm with (same as signing key> --> 612
 <saml2:SubjectConfirmationData 613
xsi:type="saml2:KeyInfoConfirmationDataType> 614
 <ds:KeyInfo> 615
 <ds:X509Data> 616
 <!-- Here comes the sender's X509 cert --> 617
 MIIB9zCCAWSgAwIBAgIQ... 618
 </ds:X509Data> 619
 </ds:KeyInfo> 620
 </saml2:SubjectConfirmationData> 621
 622
 </saml2:SubjectConfirmation> 623
 </saml2:Subject> 624
 625
 <!-- Entity which should consume the information in the assertion. --> 626
 <saml2:Conditions 627
 NotOnOrAfter="2008-08-01T21:42:43Z"> 628
 <saml2:AudienceRestrictionCondition> 629
 <saml2:Audience>http://wsp.example.com</saml2:Audience> 630

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 18

 </saml2:AudienceRestrictionCondition> 631
 </saml2:Conditions> 632
 633
 <saml2:AttributeStatement> 634
 ... 635
 </saml2:AttributeStatement> 636
 </saml2:Assertion> 637
 638
 <!-- This SecurityTokenReference is used to reference the SAML Assertion from a 639
ds:Reference --> 640
 <wsse:SecurityTokenReference 641
 xmlns:wsse="..." xmlns:wsu="..." xmlns:wsse11="..." 642
 wsu:Id="str1" 643
 wsse11:TokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-644
1.1#SAMLV2.0"> 645
 <!-- A key idenfier with the SAML Assertion ID --> 646
 <wsse:KeyIdentifier 647
 ValueType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-648
1.1#SAMLID"> 649
 sxJu9g/vvLG9sAN9bKp/8q0NKU= 650
 </wsse:KeyIdentifier> 651
 </wsse:SecurityTokenReference> 652
 653
 654
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 655
 <ds:SignedInfo> 656
 <!-- in general include a ds:Reference for each wsa: header added according 657
to SOAP binding --> 658
 659
 <!-- include the MessageID in the signature --> 660
 <ds:Reference URI="#mid">...</ds:Reference> 661
 662
 <!-- include the To in the signature --> 663
 <ds:Reference URI="#to">...</ds:Reference> 664
 665
 <!-- include the Action in the signature --> 666
 <ds:Reference URI="#action">...</ds:Reference> 667
 668
 <!-- include the Framework in the signature --> 669
 <ds:Reference URI="#framework">...</ds:Reference> 670
 671
 <!-- include the Timestamp in the signature --> 672
 <ds:Reference URI="#ts">...</ds:Reference> 673
 674
 <!-- include the SAML Assertion in the signature to avoid token substitution 675
attacks --> 676
 <ds:Reference URI="#str1"> 677
 <ds:Transform Algorithm="http://docs.oasis-open.org/wss/2004/01/oasis-678
200401-wsssoap-message-security-1.0#STR-Transform"> 679
 <wsse:TransformationParameters> 680
 <ds:CanonicalizationMethod 681
 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/> 682
 </wsse:TransformationParameters> 683
 </ds:Transform> 684

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 19

 </ds:Reference> 685
 686
 <!-- bind the body of the message --> 687
 <ds:Reference URI="#MsgBody"> 688
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 689
 <ds:DigestValue>YgGfS0pi56pu...</ds:DigestValue> 690
 </ds:Reference> 691
 </ds:SignedInfo> 692
 693
 <!-- include a security token reference for holder-of-key confirmation --> 694
 <ds:KeyInfo> 695
 <wsse:SecurityTokenReference 696
 xmlns:wsse="..." xmlns:wsu="..." xmlns:wsse11="..." 697
 wsu:Id="str2" 698
 wsse11:TokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-699
profile-1.1#SAMLV2.0"> 700
 <!-- A key idenfier with the SAML Assertion ID --> 701
 <wsse:KeyIdentifier 702
 ValueType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-703
1.1#SAMLID"> 704
 sxJu9g/vvLG9sAN9bKp/8q0NKU= 705
 </wsse:KeyIdentifier> 706
 </wsse:SecurityTokenReference> 707
 </ds:KeyInfo> 708
 709
 <ds:SignatureValue> 710
 HJJWbvqW9E84vJVQkjjLLA6nNvBX7mY00TZhwBdFNDElgscSXZ5Ekw== 711
 </ds:SignatureValue> 712
 </ds:Signature> 713
 </wsse:Security> 714
 </s:Header> 715
 716
 <s:Body wsu:Id="MsgBody"> 717
 <idpp:Modify> 718
 : <!-- this is an ID-PP Modify message --> 719
 </idpp:Modify> </s:Body> 720
</s:Envelope> 721

4.2 Receiving and processing a SOAP message 722

The receiver of a SOAP message (either normal message or fault) MUST perform the 723

following tests on the header blocks: 724

 725

Note: Although the steps are numbered sequentially, implementations MAY use a different 726

sequence as long as all tests are applied. 727

 728

1. The incoming message MUST satisfy the rules for SOAP binding defined in section 729

“SOAP Binding”. 730

2. The incoming message MUST satisfy the rules given in [WSAv1.0-SOAP]. 731

3. The incoming message MUST include all mandatory header blocks defined above. 732

4. Each header block in the message (mandatory as well as optional) MUST be tested 733

according to the processing rules defined above. 734

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 20

 735

Below is shown a procedure illustrating how messages can be verified and processed (some 736

details e.g. regarding signature processing have been omitted; for details see the XML digital 737

signature standard). It is assumed that the receiver has all the information required to process 738

the message including certificates of trusted parties issuing tokens. The procedure is not 739

normative and messages may be processed / validated in other ways; implementations may 740

for example perform the steps in other sequence for efficiency reasons. 741

 742

1. Receive the SOAP message over a secure transport protocol (SSL or TLS). 743

2. Validate that the following mandatory SOAP headers are present and contain 744

appropriate values: <wsa:MessageID> should include a unique value, 745

<sbf:Framework> should specify a framework version and profile understood by 746

the recipient and <wsa:Action> should be consistent with the invoked service. 747

3. If present, check that the content of the <wsa:To> header corresponds to the recipient 748

/ endpoint. 749

4. Check the received message ID value against the local cache to determine whether it 750

has been received before (replay attacks). If not, add message ID to cache to detect 751

future replays. 752

5. Check that exactly one <wsse:Security> header is present: 753

a. Verify that the <wsu:Timestamp> is within acceptable limits of local server 754

time as defined by deployment policy. 755

b. Validate all embedded security tokens including that they are signed by a 756

trusted issuer, timestamps, audience restrictions etc. (token validation rules 757

vary with token type). Any proof-of-possession requirements are handled 758

below. 759

c. Check that the message signature (<ds:Signature>) contains references to 760

all header block defined above, to the SOAP body and all included SAML 761

assertions (via a SecurityTokenReference). Verify that all digest values 762

match the referenced elements. 763

d. Verify the message signature using the key referenced in the <ds:KeyInfo> 764

element. 765

e. Check that the signing key is vouched-for via a security token issued by a 766

trusted party. 767

f. Verify that proof-of-possession requirements in tokens (e.g. SAML holder-of-768

key SubjectConfirmation) are demonstrated via the message signing key. 769

Thus, the proof-of-possession key in tokens must match the key that signed 770

the message. 771

g. Check that all claims required by the service have been demonstrated by the 772

attached security tokens. 773

6. Discard message payload if any of the above checks fail and send a meaningful error 774

message to the recipient. 775

7. Handle message payload and send response over secure transport. 776

 777

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 21

Note that the recipient may need to perform additional checks e.g. related to authorization. 778

 779

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 22

5 Security Considerations 780

Message integrity and authenticity is established by mandatory signing (and subsequent 781

verification) of the SOAP body, header blocks in this specification and security tokens. 782

 783

Message confidentiality is not addressed directly in this profile but may be established by 784

using a secure transport protocol such as SSL 3.0, TLS 1.1 or later HTTPS, or by 785

encryption of name identifiers or individual attributes in the SAML 2.0 assertion. 786

 787

Message freshness and prevention against replay attacks is established by including unique 788

message Ids that WSP’s should cache, time stamps and expiry of tokens. How long time a 789

message should be kept in the cache at the WSP is governed by deployment policy. 790

 791

Message authorization is established by including signed authentication assertions in the 792

form of SAML assertions issued by a trusted STS, Liberty Discovery Service or Identity 793

Provider. 794

 795

Security tokens in the form of SAML 2.0 assertions are signed by the issuer and sensitive 796

attributes may be encrypted if deemed necessary via the mechanisms described in [SAML-797

CORE] including encryption of the entire assertion, name identifiers and individual 798

attributes. 799

 800

It is outside the scope of this profile to define how a Web Service Provider performs local 801

authorization decisions but the WSP may take the following request parameters into 802

consideration: 803

 The sender identity as established via the signature. 804

 The invoker / user identity as established via authentication assertions. 805

 The resource / service being accessed. 806

 Trust in the STS, Discovery Service or Identity Provider that has issued the 807

authentication assertion. 808

 The assurance level established as part of the assertion. 809

Liberty Alliance Project Final Version: 1.0

Basic SOAP Binding

Liberty Alliance Project

 23

6 References 810

[SOAPv1.1]

[WSS]

[WSS-STP]

[SAML-CORE]

[LIB-SOAP]

[LIB-SAMLP]

[LIB-SEC]

[WSS-SAML]

“Simple Object Access Protocol (SOAP) 1.1," Box, Don,

Ehnebuske et. al. World Wide Web Consortium W3C

Note (08 May 2000).

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/”.

“Web Services Security: SOAP Message Security 1.1”,

OASIS Standard, 1 February 2006.

“Web Services Security: SAML Token Profile 1.1”,

OASIS Standard, 1 February 2006.
http://docs.oasis-open.org/wss/oasis-wss-

SAMLTokenProfile-1.1

“Assertions and Protocols for the OASIS Security

Assertion Markup Language (SAML) V2.0”, OASIS

Standard, 15 March 2005.

“Liberty ID-WSF SOAP Binding Specification”, version

2.0, Liberty Alliance Project

“ID-WSF 2.0 SecMech SAML Profile”, version 2.0,

Liberty Alliance Project.

“Liberty ID-WSF Security Mechanisms Core”, version

2.0, Liberty Alliance Project.

“Web Services Security: SAML Token Profile 1.1”,

OASIS Standard, 1 February 2006.

[Scenarios]

[WSAv1.0-SOAP]

“Identity-Based Web Services – Scenarios”, Danish IT

and Telecom Agency. (Not yet published on the WWW)

“WS-Addressing 1.0 SOAP Binding”, World Wide Web

Consortium W3C Recommendation (9 May 2006).

 811

http://docs.oasis-open.org/wss/oasis-wss-SAMLTokenProfile-1.1
http://docs.oasis-open.org/wss/oasis-wss-SAMLTokenProfile-1.1

